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Quantum mechanical compact modeling of symmetric double-gate MOSFETs using
variational approach
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Abstract: A physics-based analytical model for symmetrically biased double-gate (DG) MOSFETs considering
quantum mechanical effects is proposed. Schrödinger’s and Poisson’s equations are solved simultaneously using a
variational approach. Solving the Poisson and Schrödinger equations simultaneously reveals quantum mechanical
effects (QME) that influence the performance of DG MOSFETs. The inversion charge and electrical potential
distributions perpendicular to the channel are expressed in closed forms. We systematically evaluated and analyzed
the potentials and inversion charges, taking QME into consideration, in Si based double gate devices. The effect
of silicon thickness variation in inversion-layer charge and potentials are quantitatively defined. The analytical
solutions provide good physical insight into the quantization caused by quantum confinement under various gate
biases.
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1. Introduction

Silicon-on-insulator (SOI) has been long known for its
superior performance capabilities, and there is an interest
in double-gate (DG) and fully depleted silicon-on-insulator
(FD/SOI) MOSFETs because of their scalability and superior
speedŒ1�. Sub 100 nmMOSFET technologywill be widely used
in device modeling for at least the next 10 yearsŒ2�. Short-
channel effectsare suppressed via the sub micrometer MOS-
FETs rather than by extreme channel doping densities and pro-
files.

The deep sub micrometer MOSFETs of the present gener-
ation use very high channel doping and very thin gate oxides
to avoid short-channel effects, resulting in very high electric
fields at the Si/SiO2 interface. At such high electric fields a
significant bending of the energy-bands at the Si/SiO2 inter-
face is produced and the potential well becomes narrow enough
to quantize the motion of inversion layer carriers in the direc-
tion perpendicular to the interface. Due to this quantization,
the energy levels are split into subbands, and the lowest of the
allowed energy levels for electrons in the well does not coin-
cide with the bottom of the conduction band. For MOSFETs
in the threshold region, the reduced gate capacitance resulting
from QMEs increases the short-channel effects and lowers the
transconductance and drive currents. Thus, for these devices
classical theory is no longer sufficient, and QMEsŒ3�5� become
very important for the accurate modeling of device character-
istics.

One important consequence of the quantum mechanical
(QM) carrier distribution, with regard to the device behavior,
occurs when the silicon thickness is varied, so a reliable com-
pact model for DG-MOSFETs must take into account quan-
tum effects. To suppress the short-channel effects, a thin sil-
icon film tsi with thickness < 20 nm is often used, and the

quantum confinement effects can no longer be ignored. It has
been shown that QMEs play a crucial role for device oper-
ation when the channel thickness is smaller than 20 nmŒ6; 7�.
Much work has been devoted to modeling the electrostatic fea-
tures of DG-MOSFETs, which can be categorized as: (i) mod-
els relying on a purely classical descriptionŒ8�11�, which do not
include QMEs; (ii) 1D and 2D self-consistent models which
numerically solve the coupled Schrödinger and Poisson equa-
tionsŒ12�14�, which are ideal for quantitative understanding of
the underlying physics but which are not suitable for compact
modeling; (iii) models using a perturbation theory—even in the
strong inversion region—in which the structural confinement
is taken into account, but which are not suitable for dealingwith
the strong field dependenceŒ15; 16�; and (iv) models based on a
QMvariational approachŒ17�, in which the potential depends on
the inversion charge density. These models do not calculate the
inversion layer charge based on QM effects, instead, they em-
ploy quantum correction using model parameters. Thus, there
is scope for developing a simple yet accurate analytical model
for inversion layer charge for present day MOS devices con-
sidering QMEs.

In this paper, we develop a physical model for QMEs in
the threshold region of symmetrical DG-MOSFETs. The de-
tails about the double gate and the band diagram are given,
and the generation of the quantum analytical model for DG-
MOSFET is presented. Also, the inversion charge and inver-
sion layer centroid is modelled in terms of gate voltages.

2. Device physics

In recent years, several technologies have been proposed
to keep up with the scaling imposed by Moore’s law. Among
these innovations are the introduction of new materials in the
CMOS process, such as high-k dielectrics, metal gate elec-
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Fig. 1. Cross section of symmetrical DG-MOSFET structure and its
coordinate system.

trodes and stressors, which allow the build-up of mechanical
stress in the silicon to increase carrier mobility. In addition to
these material innovations, new transistor architectures have
emerged. A silicon-on-insulator (SOI) transistor is one such
example.

SOI has been long known for its superior performance ca-
pabilities. Recently, one has witnessed an evolution of the SOI
transistor from a classical, planar, single-gate architecture to a
three dimensional structure withmultiple gates (double-, triple-
or quadruple-gate devices). The double-gate MOSFET is con-
sidered to be one of the most promising device structures to ex-
tend CMOS scaling into the nanometer regime. Figure 1 shows
the cross section and coordinate systems of a long symmetrical
undoped double gate (DG) nMOSFET. L is the gate length, tsi
is the silicon film thickness and tox is the gate-oxide thickness.
The key factors that limit how far a DGMOSFET can be scaled
come from short-channel effects such as threshold voltage roll-
off and drain-induced barrier lowering (DIBL). For tsi!0, the
confinement is in the potential well defined by the front- and
back-gate oxide barriers (which are virtually equal to infinity)
as illustrated in Fig. 2. Here almost all electrons occupy the
ground-state sub-band of the lower ladders, andmore than 90%
of the total electrons occupy the ground-state sub-band for tsi
< 3 nm. Higher order sub-bands are not important.

3. QM modeling process

For DG and FD/SOI MOSFETs, when the gate is biased
at the flat-band voltage, the confinement is in the potential
well defined by the front- and back-gate oxide barriers, for
which higher-order subbands are important. In this case, the
Schrödinger equation can be solved analytically to yieldŒ18�,

 j .x/ D

s
2

tsi
sin

.j C 1/�x

tsi
; j D 0; 1; 2; � � �: (1)

Considering the above equation, the trial eigenfunction for
FD/SOI MOSFETs,

Fig. 2. Schematic energy-band diagram across the thin Si film (chan-
nel) of a symmetrical DG nMOSFET with VGS > 0 applied to both
gates; the quantized electron sub-band energies in the inversion layer
are also shown.
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where bj is the undetermined parameter and aj is the normal-
ization constants.

For symmetrical DGMOSFETs, we can extend Eq. (2) and
write the trial eigenfunctions as,
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Normalization of Eq. (3),
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Nowwe follow the variational approach to simultaneously

solve, the Schrödinger equation and Poisson’s equation,
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In Eq. (5), '.x/ is the electric potential in the silicon film,
Nj is the inversion-electron areal density in the j th sub-band,
Ninv is the total inversion-electron density, and  j .x/ is the
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eigenfunction. In order to solve Eq. (5), we need an approxi-
mation for  j .x/. Use  j .x/ as  0.x/, the lowest-energy sub-
band eigenfunction (j D 0). The electrostatic potential in the
Si film is obtained by integrating Eq. (5) twice from x D 0 to
tsi:
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(6)

whereQd D qtsiNA is the depletion charge density andQinv D

qNinv is the inversion charge density. The boundary conditions
for integration are,

"ox
Vg1 � Vfb � 's1

tox1
D �"si

d'
dx

jx D 0; (7)

"ox
Vg2 � Vfb � 's2

tox2
D �"si

d'
dx

jx D tsi ; (8)

where
'.x/ D 's1 D 0 at x D 0;

'.x/ D 's2 D 0 at x D tsi:

The one dimensional (1-D) Schrodinger equation is written
as,

�
h2

8�2mx

d2

dx2
 j .x/C .�q/'.x/ j .x/ D Ej j .x/; (9)

where h D 6:63� 10�34 J�s is the Plank’s constant, Ej are the
sub-band energies, andmx is the effective mass of electrons in
the x-direction.

In the effective mass approximation the valleys are gen-
erated in pairs. The six valleys split into two groups of sub-
bands (known as two ladders). The lower set of sub-bands (un-
primed ladder) is 2-fold degenerate and represents those ellip-
soids that respondwith a heavy longitudinal effectivemass (mL
D 0.916m0/ in the gate confinement direction while the higher
set of sub-bands (primed ladder) is 4-fold degenerate and rep-
resents those ellipsoids that respond with a light transverse ef-
fective mass (mH D 0.19m0/. Because of the heavier longi-
tudinal mass, the unprimed sub-bands have relatively lower
bound-state energies as compared to the primed sub-bands, and
are therefore primarily occupied by electrons. Based on the
quantum mechanical variational approach, bj is evaluated by
dEj =dbj D 0. With approximation bj is derived as,

bj D tsi

264qmx�
2.Qd C

5

6
Qinv/

.j C 1/"sih2
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1=3

: (10)

4. Model for inversion charge and centroid

In FD-SOI MOSFETs, the center of the Si film is the
maximum carrier-concentration point.With increasingVgs, this
point converts to the minimum carrier-concentration point as
the two channels are formed. An onset condition for volume
inversion can thus be defined by d2 2=dx2 D 0 at x D tsi=2

with Š  0 gives b0 Š � from Eq. (9). The inversion charge
should then be obtained and the device under bias condition.
For optimal DG MOSFET design, we need to ensure that the
inversion condition defined above is met at the device where
Vgs Š Vdd. Therefore,Qinv must relate to Vgs.

The inversion-charge density can be related to the gate
voltage as followsŒ19�:

Qinv D 2C 1
ox

�
Vgs � Vt

�
; (11)

where
C 1
ox D

Cox

1C Cox
xI

"si

; (12)

Vt D 'ms C 'dep C
Qd

Cox
: (13)

With 'dep D 's �
xIQinv

"si
is the depletion potential, Cox D

"ox=tox is the gate oxide capacitance, xI is the inversion layer
centroid, 'ms is the work function difference between gate and
silicon film, and Vt is a constant threshold voltage for strong
inversion.

The inversion layer centroid is given by,

xI D 2

Z tsi=2

0

 2.x/dx: (14)

At,  Š  0 gives b0 Š � . The onset of strong volume
inversion is defined with b0 Š � and hence xI Š tsi=� .

5. Results and discussion

To verify the compact quantum model and to give an in-
sight into the quantum effects in DG MOSFETs, we applied it
to a variety of Si film thickness of symmetrical DGMOSFETs.
The results are compared with SCHREDŒ20�, which numeri-
cally and self-consistently solves the Poisson and Schrödinger
equations. Consider n-channel devices with metal (Al with 'm
D 4.10 eV) gates, oxide thickness toxf D toxb D 1.5 nm,
NA D 1017 cm�3 and tsi D 1–20 nm. Figure 3 shows the
model predicted eigenvalues versus the normalized position
across the Si film, compared with SCHRED predictions. Also
we show the lowest-energy sub-band eigenfunction  o for tsi
D 5 nm under different bias conditions. In all bias conditions,
the model predictions agree well (almost exactly) with those of
SCHRED. Figure 4 showsmodel and SCHRED predicted elec-
tric potentials versus the normalized position for tsi D 5 nm
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Fig. 3. Model and SCHRED-predicted eigenfunctions normalized po-
sition in the Si film. Lowest energy sub-band eigenfunctions for tsi D

5 nm under different values of Vgs (different bias conditions).

Fig. 4. Electrical potential versus normalized position in the silicon
film of symmetrical DG nMOSFETs for (a) tsi D 5 nm, (b) tsi D 20
nm under different bias conditions.

and tsi D 20 nm under different bias conditions. The magni-
tude of the electric potential can be elevated by applying vari-
ous gate-source voltages. The model predictions are very good

Fig. 5. Average inversion layer centroid versus Si-film thickness for
different total inversion-electron densities in symmetrical DG nMOS-
FETs.

Fig. 6. Average inversion layer centroid versus inversion charge for
various values of silicon thicknesses.

approximations for all regions of device operation (for weak
(low Vgs/ as well as strong (high Vgs/ inversion). The predicted
potentials agree very well with SCHRED for tsi D 5 nm and
under different values of Vgs.

It is to be noted that at the strong inversion, as defined
with reference to the previous section, b0 Š � and hence
xI Š tsi=� . Figure 5 shows, xI in Eq. (15) versus tsi for dif-
ferent Ninv and the line corresponding to xI D tsi=� . For rela-
tively thicker tsi, the symmetrical DG MOSFET operates with
two distinct channels, and xI decreases with increasing Ninv
due to the electric field-governed confinement as in the bulk-
Si MOSFETŒ1�. For a givenNinv, xI is virtually independent of
tsi. For relatively thin tsi, the DG device operates with inver-
sion, and xI Š tsi=� independent of Ninv. Thus, for given Ninv
with inversion (thin tsi/, xI increases linearly with tsi.

Figure 6 shows the inversion charge centroid versus in-
version charge for different values of tsi. It can be seen that
the centroid value decreases as the inversion charge increases
since the charge distribution shifts toward the Si/SiO2 inter-
face. Figure 7 illustrates the effect of quantum confinement in
DGMOSFETs by plotting the inversion layer charge versus the
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Fig. 7. Channel charge of DGMOSFET as a function of silicon thick-
ness for several values of Ninv.

silicon film thickness with various inversion electron concen-
trations. The results shown in the figure represent the inversion
layer charge data obtained analytically by means of Eq. (13).
Similar to bulk MOSFETs, quantization in DGMOSFETs also
leads to discrete electron sub-bands higher than the bottom of
the conduction band and the electron concentration peaks away
from the surface. Also it shows that inversion charge increases
linearly with increasing Ninv. For thin tsi, the inversion charge
increases linearly up to a particular limit, and decreases linearly
for high tsi values.

6. Conclusion

A compact physics-based quantum-effects model for sym-
metrical DGMOSFETs of arbitrary Si-film thickness has been
developed and demonstrated. The QME is more pronounced
in the ultrathin silicon film. Due to the quantum effect, the
channel charge carrier density is lower than the classical one.
We have developed a model to calculate the inversion charge
of DG MOSFETs, where quantum effects are included. The
model, based on the quantummechanical variational approach,
accounts for the Si-film thickness dependence with electric
potential, inversion charge, centroid and inversion charge. A
design criterion for achieving a beneficial strong volume-
inversion operation in DG devices was quantitatively defined.
Themodel predictions are a very good approximation for all re-
gions of device operation (for weak (low Vgs/ as well as strong
(high Vgs/ inversion). Therefore, the model of this work pro-
vides a useful method to study QME on DG MOSFETs. DG
MOSFETs can be symmetrical or asymmetrical. For asymmet-
rical DG MOSFETs, the front and back gate materials and/or
the gate oxide thicknesses are different. Our QM model may
be extended to the asymmetrical DG MOSFETs.
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