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A theoretical model of the femtosecond laser ablation of semiconductors considering
inverse bremsstrahlung absorption
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Abstract: The mechanism of the femtosecond laser ablation of semiconductors is investigated. The collision pro-
cess of free electrons in a conduction band is depicted by the test particle method, and a theoretical model of
nonequilibrium electron transport on the femtosecond timescale is proposed based on the Fokker–Planck equa-
tion. This model considers the impact of inverse bremsstrahlung on the laser absorption coefficient, and gives the
expressions of electron drift and diffusion coefficients in the presence of screened Coulomb potential. Numerical
simulations are conducted to obtain the nonequilibrium distribution function of the electrons. The femtosecond laser
ablation thresholds are then calculated accordingly, and the results are in good agreement with the experimental
results. This is followed by a discussion on the impact of laser parameters on the ablation of semiconductors.
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1. Introduction

In the process of femtosecond laser processing, extremely
high energy can be transferred to materials in a very short time
duration, which causes the ablation of materials in the irradi-
ated area. The electrons in the valence band can obtain energy
by absorbing photons and then turn into free electrons in the
conduction band. It has been experimentally verified that in
femtosecond laser processing, electrons are in a nonequilib-
rium state, which could be attributed to the ultra short pulse
durationsŒ1; 2�.

How to describe the electron configuration in semicon-
ductors is key to modeling the mechanisms of semiconduc-
tor ablation via ultra-short pulses. A two-temperature model
is proposed to describe the time evolution of electron and
phonon distributions, which has been utilized by many re-
searchers to study the ablation mechanisms of materials via
femtosecond lasersŒ3�8�. The model is appropriate under the
condition that both electrons and photons are in an equilib-
rium state. While for femtosecond lasers, the pulse widths
are of the order of a femtosecond and the electrons are in a
nonequilibrium state, therefore the so-called electron temper-
ature has no meaning. As a result, the two-temperature model
cannot be applied. Instead, electron transport during the ab-
lation of semiconductors by femtosecond pulses can be de-
picted by the kinetic models based on nonequilibrium trans-
port theory. The Boltzmann equation is a method commonly
used for describing the time evolution of electronsŒ9�14�. Reth-
feld et al. presented a model to describe the time evolution
of electron distributions in metals under femtosecond laser ir-
radiation using the Boltzmann equationŒ13�, and it was found

that for lasers with pulse durations less than 10�13 s, the
electron distributions noticeably deviated from the equilib-
rium state. It was also confirmed that free electrons are in
a nonequilibrium state during the ablation of dielectrics by
femtosecond pulses by Kaiser et al., who studied the energy
transfer in dielectric ablation based on the Boltzmann equa-
tionŒ12�.

Since the Boltzmann equation is a multidimensional non-
linear differential-integral equation, it is difficult to solve it
numerically. An alternative is the stochastic model based on
Brownian motion. The time evolution of nonequilibrium elec-
tron distributions can be described by the Fokker–Planck equa-
tion. The Fokker–Planck equation is equivalent to the Boltz-
mann equation, which is a differential equation, and is easier
to solve when compared with the Boltzmann equation. Some
researchers applied the same form of the linear Fokker–Planck
equation to study the ablation mechanisms of dielectrics by
femtosecond lasersŒ15�18�. In these studies, the relaxation time
of the electrons and laser absorption coefficient are assumed
to be constant. But the relaxation time and absorption coeffi-
cient are actually not constant; instead, they are related to the
microstate of electrons.

This paper uses the mechanism of screened Coulomb colli-
sion to describe the electron–electron collisions. The laser en-
ergy reduction resulting from the inverse bremsstrahlung ab-
sorption is taken into account. Using the test particle method,
a nonlinear Fokker–Planck model is developed to depict the
distribution functions of the free electrons. A physical im-
age of this model can better reflect the time evolution of the
nonequilibrium electrons in materials under femtosecond laser
pulses.
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2. Theoretical model

2.1. Time evolution of nonequilibrium electron distribu-
tion

When target materials are under the irradiation of fem-
tosecond laser pulses, the electrons in the valence band can
jump into the conduction band to become free electrons, as
a result of the mechanisms of multiphoton ionization and
avalanche ionization. The collision process of free electrons
in the conduction band can be described by the test parti-
cle method, which requires that screened Coulomb collisions
are generated between a test electron beam and nonequilib-
rium electrons. The distribution of free electrons is assumed to
be isotropic. Let f .v; t/ represent the probability distribution
function of the velocity of nonequilibrium electrons at time t ,
which can be described as follows using the Fokker–Planck
equation expressed by the Rosenbluth potential function:
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ln�, in which e is the electric charge,
me is the electron mass, "0 is the permittivity of mate-
rials, and ln� is the Coulomb logarithm. S1 is the mul-
tiphoton ionization rate, given by the Keldysh’s formula
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reduced Planck constant, k is the number of absorbed pho-
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Œ20�. S2 is the avalanche ionization rate given by S2 D

˛I.t/f .v; t/, where ˛ denotes the avalanche ionization coeffi-
cient, E is the electric field strength, and I.t/ is the laser inten-
sity at t timeŒ19�. H.v/ and G.v/ in Eq. (1) are the Rosenbluth
potential functions expressed by
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respectively, in which Ne represents the average number den-
sity of electrons and C is the speed of light.

Let t D �1 be the initial time. Thus, the initial condition
of Eq. (1) can be expressed as

f .v; t/t D �1 D 0; (4)

which implies that there is no free electron in the conduction
band at the beginning.

The boundary conditions for velocity space are described
by

J.v; t/v D 0 D 0; (5)

and
f .v; t/v D 1 D 0; (6)

where J.v; t/ represents the probability flux of electrons given
by
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Equation (5) ensures that once an excited electron becomes

a free electron in the conduction band, it will never fall back
to the valence band, which might be caused by the impact of
electron recombination. Equation (6) guarantees that the veloc-
ity of free electrons cannot exceed the speed of light. The time
evolution of electron distribution functions can be derived by
solving the nonlinear partial differential equations consisting
of Eqs. (1) to (7).

2.2. Numerical solution

After the dimensionless of Eq. (1), the Runge–Kutta
method can be applied to solve the time step of this equation,
which is separated by a finite difference at each step. Then,
the resulting nonlinear equations can be solved by the overre-
laxation iterative method to achieve the probability function of
electrons that satisfies the accuracy requirement.

The difficulty of solving this nonlinear equation lies in how
to calculate the dimensionless quantities H �.v�/ and G�.v�/,
since they are integrals of unknown function f .v�/. Also,
H �.v�/ is singular at the point v�

1 D v�. Conventional numer-
ical integration methods can hardly be used to effectively solve
the problem for the following reasons: first, the integral on an
interval containing a singular point cannot be performed; sec-
ond, one extra global integration on the singular point for each
f .v�

1 / required in the iteration process leads to a great amount
of computation.

Consider the distribution function f .v�
j / at each node

point obtained after each iteration. Suppose the velocity of
electrons in each small range of [v�

j , v�
j C �v�] is uniformly

distributed. The values of H �.v�/ and G�.v�/ at the node
point can be expressed by
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where i and j are indices of discrete nodes.
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Therefore, the values of H �.kC1/.v�
i / and G�.kC1/.v�

i / at
the (kC1)th iteration can be obtained by the linear addition of
f .k/.v�

j /, H �.k/.v�
i /, and G�.k/.v�

i / at the kth iteration with
Eqs. (8) and (9). This way can not only eliminate the require-
ment of performing integrations containing singular points, but
also significantly reduces the computations for H �.v�

i / and
G�.v�

i /.

3. Calculations of threshold damage fluence,
laser absorption coefficient and relaxation
time

3.1. Threshold damage fluence

When the number density of free electrons in the conduc-
tion band reaches a critical value, material ablation can occur.
Assume that the nondimensional form of the number density of
free electrons in the conduction band at time t� represented by
n�.t�/, can be derived as n�.t�/ D

n.t/
Ne

D
R 1

0 f .v�; t�/ dv�.
The ablation criteria can be described as

n�.t�/ D n�
c ; (10)

where n�
c D nc=Ne, here nc denotes the critical number density

of free electrons while ablation occurs.
The time t� at which ablation occurs can be calculated

based on Eq. (10) by interpolation. The nondimensional form
of threshold damage fluence can be expressed as F �

c D
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3.2. The laser absorption coefficient

The laser energy is reduced because free electrons can ab-
sorb the energy of photons by inverse bremsstrahlung absorp-
tion. Assume the damping rate of femtosecond laser energy is
denoted by 
 , then the laser power density at time t , w.t/, can
be expressed as w.t/ D w0e�
t , where w0 is the power den-
sity at the initial time expressed as w0 D "0E2

0 /2. Here E0 rep-
resents the strength of the electric field at the initial time. So
the laser power density lost per unit time can be described as
dw.t/
dt

D w0 .�
/ e�
t .
Suppose the average energy absorbed by free electrons

is given as h"ei D 2�meNe
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age energy absorbed per unit time can be derived as dh"ei

dt
D

2�meNe
R 1

0 v2
�
�

@J.v/
@v

�
dv. According to the law of energy

conservation, the laser power density lost per unit time is equal
to the energy acquired by free electrons per unit time, i.e.
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Thus, the laser damping rate can be derived by solving
Eq. (11): 
 D

8�Neme
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0 vJ.v/dv, where J.v/ is given by
Eq. (7). For Gaussian pulses, the absorption coefficient at time
t� can be defined by ˛p.t

�/ D 
 tp; tp is the pulse duration.
This shows that the absorption coefficient is dependent on the

Fig. 1. Distribution functions of free electrons for 800 nm, 800 fs
pulses with a peak intensity of 8.5 � 1013 W/cm2. Scenarios of con-
stant and variable absorption coefficients, 0.58 and 0.72 ps, are in-
cluded.

distribution functions of free electrons. The laser power density
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3.3. The relaxation time of free electrons

The relaxation time of free electrons in the conduction
band transitioning from nonequilibrium to equilibrium can be
described by the energy relaxation time, expressed as ��

e D
h"�iˇ̌̌̌
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, where ��
e is the nondimensional relaxation time

and h"�i is the nondimensional average energy of free elec-
trons given by h"�i D

R 1

0 v�2f .v�; t�/dv�.

4. Numerical calculation results

In this paper, a numerical simulation of the ablation of
silica by femtosecond laser pulses is conducted. The physics
parameters used in the simulation are listed in Table 1. Fig-
ure 1 displays the nondimensional distribution functions of free
electrons for 800 nm, 800 fs pulses with a peak intensity of 8.5
� 1013 W/cm2. Several scenarios with different laser absorp-
tion coefficients are considered. The Maxwell distribution is
plotted for comparison purposes. It can be seen that free elec-
trons deviating from the Maxwell distribution are actually in a
nonequilibrium state. It can also be observed from Fig. 1 that
the number of high-energy free electrons is relatively low at the
beginning of irradiation, but grows gradually during the irradi-
ation process. It is also shown that at the same time, the number
of free electrons with constant absorption coefficients is signif-
icantly less than pulses with variable absorption coefficients.
This demonstrates that inverse bremsstrahlung absorption has
a significant impact on the number density of free electrons in
the conduction band.

Figure 2 illustrates the nondimensional time dependency
of the nondimensional free electron density for 400 fs pulses
of wavelengths with a peak intensity of 8.5 � 1013 W/cm2.
It is observed that the free electron densities resulting from
the pulses of variable absorption coefficients are considerably
lower than those resulting from the pulses of constant absorp-
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Table 1. Physical constants and laser parameters.
Name Notation Value Unit
Electron number density of silicaŒ26� Ne 8.22 � 1028 1/m3

Band gap energyŒ16� UL 9 eV
Electron chargeŒ23� e 1.6 � 10�19 C
Electron massŒ23� me 9.11 � 10�31 kg
Speed of lightŒ23� C 3 � 108 m/s
Vacuum permittivityŒ23� "0 8.9 � 10�12 C2/N�m2

Reduced Planck constantŒ23� „ 1.055 � 10�34 J�s
Boltzmann coefficientŒ23� kB 1.38 � 10�23 J/K
Avalanche coefficientŒ24� ˛ 9.7 � 10�4 m2/J
ReflectivityŒ25� R 0.945

Fig. 2. Time dependence of free electron density for a 400 nm laser
pulse with a peak intensity of 8.5 � 1013 W/cm2.

Fig. 3. Absorption coefficient as a function of laser peak intensity for
800 nm, 800 fs pulses at the start time (t� D 0).

tion coefficients at the same time; however, the differences
gradually become stable as time elapses. This might be an ex-
planation of the delay of ablation under the pulse irradiation of
variable absorption coefficients.

Figure 3 depicts the absorption coefficient as a function of
the laser peak intensity for 800 nm, 800 fs pulses at the start
time (t� D 0). It is shown to be a concave function with the
minimum value near the point of IMAX D 1016 W/cm2, which
is in agreement with the experimental results.

Figure 4 displays the nondimensional energy density de-

Fig. 4. Energy density dependence of the relaxation time for 800 nm
pulses of 800 fs and 200 fs with a peak intensity of 8.5� 1013 W/cm2.

Fig. 5. Pulse width dependence of threshold damage fluence at
800 nm; the peak intensity is 8.5 � 1013 W/cm2.

pendence of the nondimensional relaxation time for 800 nm
pulses of 800 fs and 200 fs with the same peak intensity of
8.5 � 1013 W/cm2. It shows that the relaxation time of free
electrons decreases as the energy density increases, and the re-
laxation time resulting from the 800 fs pulse is longer than that
from the 200 fs pulse.

Figure 5 gives the pulse width dependence of the thresh-
old damage fluence for a wavelength of 800 nm, with a peak
intensity of 8.5 � 1013 W/cm2. Two scenarios, constant and
variable absorption coefficients, are included. For comparison
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purposes, the corresponding experimental results are also plot-
ted. It can be seen that when the pulse duration is within the
range of 200 fs, the computational results based on the devel-
opedmodel in this paper are obviously in better agreement with
the experimental results than the constant absorption coeffi-
cient. And when the pulse duration is greater than the range
of 200 fs, the computational accuracy of variable absorption
coefficient is also better than the constant absorption coeffi-
cient. So the laser absorption coefficient is not a constant, and
the laser absorption coefficient should be regarded as a vari-
able parameter which is related to the free electron distribution.

5. Conclusions
In this paper, a nonlinear Fokker–Planck equation model

is established to describe the time evolution of free electrons
in the conduction band during the femtosecond laser ablation
of semiconductors. Compared to the existing kinetics mod-
els in the literature, this model considers the impact of the
mechanism of inverse bremsstrahlung absorption to the laser
absorption coefficient. An iterative approach to effectively
solve the Rosenbluth potential functions was presented. The
computational results of the threshold damage fluences and
laser absorption coefficients calculated are generally in good
agreement with the experimental results, which indicates that
the laser absorption coefficient should be regarded as a vari-
able parameter for femtosecond pulsed lasers.
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