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Statistical key variable analysis and model-based control for improvement
performance in a deep reactive ion etching process�
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Abstract: This paper proposes to develop a data-driven via’s depth estimator of the deep reactive ion etching
process based on statistical identification of key variables. Several feature extraction algorithms are presented to
reduce the high-dimensional data and effectively undertake the subsequent virtual metrology (VM) model building
process. With the available on-line VM model, the model-based controller is hence readily applicable to improve
the quality of a via’s depth. Real operational data taken from a industrial manufacturing process are used to verify
the effectiveness of the proposed method. The results demonstrate that the proposed method can decrease the MSE
from 2:2 � 10�2 to 9 � 10�4 and has great potential in improving the existing DRIE process.
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1. Introduction

With the increasing demand for continuous and convenient
access to information and communication in vehicles, more
and more high speed, powerful and nomadic electronic de-
vices such as laptops, smart phones and GPS, etc., have be-
ing incessantly renewed in the last few decades. However, suf-
fering from the inherent technical limit of the standard two-
dimensional (2D) integrated circuit (IC), powerful processor
and huge memory capability integrated in 2D ICs have dif-
ficulty crossing those obstacles such as resistive–capacitive
(RC) delay and thermal heating and power consumptionŒ1�.
Fortunately, 3D IC has been proposed as a promising means
of mitigating those problems, which can allow high integration
density, fast signal transmission, low manufacturing cost and
lower power consumption. Beyond all these benefits, hetero-
geneous stacking can easily be performed with 3D technology,
enabling more sophisticated than ever system on chip (SoC)
integration. So, 3D ICs can be regarded as a new approach to
improved IC performance and have attracted considerable at-
tention in the past few yearsŒ2�.

To realize 3D ICs and electrically connect the components
in different layers, through-silicon-via (TSV) technology may
be used to provide the electrical interconnect and to provide
mechanical support, which can increase the bandwidth, reduce
the footprint of the system, and achieve heterogeneous inte-
gration of the systemŒ3�. In TSV technology, the critical step
is to make the microvia in a silicon chip. The deep reactive
ion etching (DRIE) process is most commonly used in micro-
electromechanical systems (MEMS) devices to “drill” the hole

through the silicon substrates of individual chips. Vias are then
filled with copper which interconnects chips forming a stack.

In TSV processing, via patterns must have smooth side-
walls and a deep pattern depth in order to deposit insulator,
barrier, and seed layers, as well as full filling of metal. Unfor-
tunately, there are insufficient etching results to form deep sil-
icon via patterns. Thus, certain critical parameters of the DRIE
process have been investigated in the literatureŒ4�8�. Optimum
etch processing can be obtained by careful adjustment of the
process variables, such as passivation and etch times, wafer
temperature, ion energy, and species fluxes. Chen et al. pointed
out that the etch depth was a function of applied coil power
and SF6 flow rateŒ6�. Morgan et al. investigated that the side-
wall roughness could be reduced by using a low bias power
and reduced passivation cycle timeŒ7�. What’s more, the bal-
ance between passivation layer growth and removal also plays
a critical role in controlling profilesŒ8�. Besides optimum para-
meter adjustment, many kinds of new or improved DRIE pro-
cesses have also been proposed to improve the quality of via
patternsŒ9�11�. However, the basic relationships between the
plasma parameters and the etched depth have not been fully ex-
plored. Especially, there is a lack of in situ sensors to provide
real time information about etch depth during the DRIE pro-
cess. Therefore, etch depth control, which is not clearly under-
stood, retards the development and optimization of the etching
process for a deep silicon etch.

The objectives of this paper are to develop a systematic
approach to model etch depth with cycle number and a few
key factors. The modeling uses multi-variant statistical meth-
ods with real-time operational data. The acquired etch depth
model can be used to show how to adjust cycle number to get
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Fig. 1. The sequence step of a DRIE process. (a) Masking material (photoresist or silicon dioxide) is patterned on a silicon wafer. (b) Silicon
etching step, a shallow, isotropic trench is formed. (c) Passivation step, a protective fluorocarbon film is deposited everywhere. (d) In the
subsequent etch step, ion bombardment promotes the preferential removal of the film from all horizontal surfaces, allowing the profile to evolve
in a highly anisotropic fashion. (e) Finally, the fluorocarbon film is removed from all horizontal surfces by directional ion bombardment, and
another shallow trench is formed. (f) In the end, the alternating of etching and passivating cycles forms scallops.

a better deep silicon etch. The developed approach can be used
not only for online virtual metrology operations, but also for
controller design to improve etching quality to save production
costs.

2. Process description and problem statement

2.1. Process description

To realize 3D integration, one important technology is
TSV, which utilizes deep vias to provide the shortest intercon-
nect in the semiconductor packing industry. For via drilling,
DRIE is the most popular process which has been employed
by the Bosch process. The technology relies on a sequential
passivation and etching process to form vertical trenches and
walls on silicon substrates with high aspect ratios, as shown in
Fig. 1Œ6�.

It can be seen that the DRIE process is conducted using the
following steps:

(1) In the preparation step, pattern masking material (pho-
toresist or silicon dioxide) on a silicon wafer;

(2) In the etching step, etch silicon wafer in SF6 plasma
and form a isotropic trench;

(3) In the passivation step, deposit polymer as a passivation
layer in the TSV in a C4F8 plasma;

(4) In the subsequent etching step, ion bombardment pro-
motes the preferential removal of the film from all horizontal
surfaces, allowing the profile to evolve in a highly anisotropic
fashion;

(5) Then, alternating of etching and passivating cycles
forms scallops on the sidewalls of etched features;

(6) After completing the silicon etch, the passivation layer
was removed in an O2 plasma.

In the cyclic repetition of those etching and passivation
steps, the quality of via (depth, sidewall slope and smooth-
ness) is affected by several parameters, which include etchant

gases, flow rate of the chosen gases, RF-power, bias voltage,
process pressure, temperature, etc. Extensive studies have been
performed on via formation, especially the effect of process
parameters on via profile and sidewall roughnessŒ5; 6�.Many in-
struments are installed to record those process parameters and
corresponding control actions are taken to manipulate them to
attain the target value. Unfortunately, there is no in situ sensor
to provide real time information about the etching depth in each
processed cycle. The quality of deep via is usually measured
offline, which may lead to scrapped wafers. So, field engineers
attend to the investigation of these process variables in order
to enhance the yield rate.

2.2. Problem statement

In general, design of experiments (DOE) is used to op-
timize the DRIE process for depth of via, etch rate, sidewall
slope and smoothness. In an industrial manufacturing process,
those parameters are kept with their claimed value to achieve a
consistent performance. In fact, wafers processed in the nomi-
nally identical DRIE process show different end-of-line quality
(especially the depth), because the performances of DRIE will
change with the passage of time or after preventative mainte-
nance.

The study was focused on mining out key variables X 0

(X 0 � X ), which represent the underlying causes of variation
in depth of via, and deriving a variation model.

y D f .X 0/; (1)

where y is the depth of via, X 0 is key variables vector, and X

is all process variable vector.
Then, a model-based controller was designed to improve

the performance of the DRIE process and achieve the same
depth of via as much as possible.
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Fig. 2. Data of sensor variable and its synchronization. (a) Procession times vary from batch-to-batch. (b) Synchronized results.

3. Development of virtual metrology

The DRIE manufacturing stage can be regarded as a multi-
step batch (wafer or lot) process. So, the data recorded by sen-
sor variable within a batch should be regarded as a profile of
variables. Consequently, the processing times vary from batch
to batch (Fig. 2(a)) and a synchronization procedure is required.
Figure 2 demonstrates the three-dimensional (variable-profile-
batch) data structure of sensor variable output and its synchro-
nized versionŒ12�. In this work Akima spline is applied to each
step for synchronization.

3.1. Feature extraction on FDC data

The idea of virtual metrology (VM) is based on the con-
cept that the profile of sensors installed in process equipment
can reflect process quality effectively and loyally to find out
the excursion issues of process equipment and defect impact.
But these raw data collected from a fault detection and classi-
fication (FDC) system are a large number of time serials. So,
these massive and untreated data cannot be used to effectively
undertake the subsequent VM model building process. How
to project these large numbers of values of each profile onto
the space spanned by the variable transformation is an impor-
tant issue. In this work, the data treatment methods, which in-
clude the discrete Fourier transform (DFT) method shown in
Fig. 3(b), the area method shown in Fig. 3(c) and the average
method shown in Fig. 3(d), are proposed to effectively convert
these massive values into the significant univariates that VM
models need.

Taking Fig. 3 (a) for example, there are many cyclical pro-
files owing to the alternating etching and passivation steps. The
DFT gives a solution to extracting features from those kinds
of signals, which computes the frequency information of the
equivalent time domain signalŒ13�. Since a cyclical signal in the
DRIE process contains only real point values, we can make use
of this fact and use a real-point Fast Fourier Transform (FFT)
for increased efficiency. To access the spectral component of
z, the DFT Z: < ! Cp of the output trajectory fzkgn

kD1
could

be computed as follows:

DFT: Z.m!s/ D

n�1X
kD1

zke�jm!sk ; !s D
2�

n
; (2)

where k D 1; 2; � � � ; n is sampling time, m D 0; 1; � � � ; n � 1

of the DFT computation.
Using a DFT (fft and fftshift command in Matlab) algo-

rithm, the resulting output is shown in Fig. 3(b). The figure
clearly reveals the nature of the cyclical time series, which con-
tains both the magnitude and phase information of the original
time domain signal (Fig. 3(a)). There are three clear spectral
peaks, which indicates that there is more to this signal than
just noise. Among three obvious components, one is located
at zero frequency and the other two peaks are symmetric. So,
two features (constant value and highest frequency value) are
extracted.

Except for cyclical signals, there are also some other pro-
files. Some of them change with time (Fig. 3(c)), some of them
remain constant (Fig. 3(d)). In this work, area and average
methods are used to extract featureŒ14�.

Area: A D

Z zn

z1

f .z/dz D

nX
kD1

zk : (3)

Average: Nz D

Pn
kD1 zk

n
: (4)

Using feature extraction, three-dimensional data (variable-
profile-batch) descends as two dimensional data (feature-
batch). Then, a statistical analysis approach for building VM
is used as follows.

3.2. Key variable selection based on a statistical method

Although the high dimensional data have been reduced to
two dimensions by using feature extraction approaches during
the preprocessing step, there are still too many input variables.
Some of them are highly correlated, and some of them are
even unnecessary for VM prediction models. Principal com-
ponent analysis (PCA) and partial least square (PLS) give a
solution to overcome this problem, which projects the original
input variables onto a space defined by orthogonal principal
components (PCs) or latent variables (LVs). However, the field
engineer may not understand the physical meaning of PC/LV.
Thus, a variable selection method is used in this paper. Unlike
PCA and PLS, the variables selected by a stepwise regression
method usually have physical meaning. Therefore, the infer-
ential models built by the stepwise regression method are suit-
able for process control and process fault diagnosis. Besides,
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Fig. 3. Examples of the feature extraction on FDC data. (a) Original cyclical profile. (b) Feature extraction by DFT. (c) Feature extraction by
area. (d) Feature extraction by avergae.

the implementation of the algorithm is easy and fast on digital
computers.

The purpose of stepwise regression is to find an appropri-
ate subset of input variables ˝ D fx1; x2; � � � ; xpg to fit the
multiple regression model below to a set of data:

Oy D ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ǰ xj ; (5)

where x1; x2; � � � ; xj are the selected key variables;
ˇ0; ˇ1; � � � ; ǰ are the coefficients of regressor; and Oy is
the predicted depth.

Stepwise regression begins with a single input variable se-
lected from the candidate set � which can give a best linear re-
lationship for input-output. Then, a new variable is added from
the candidate set � (forward selection) if it can improve ex-
planation of the developedmodel. An existing selected variable
can be removed (backward elimination) if its absence increases
or at least maintains the prediction accuracy. By repeating for-
ward selection and backward elimination alternately until the
candidate set is empty or prediction accuracy improvement is
negligible, one can achieve a small subset of important input
variables (see the authors’ previous workŒ15�).

4. Results and discussion

To demonstrate our approach, two batches of data are
collected (2010=2=23–2010=3=3 and 2010=5=14–2010=5=29)

from a normally identical DRIE process in a local fabrication
unit. The recipe of the first batch data is 200 cycles, the sec-
ond recipe is 210 cycles. The specification (target of depth) of
both batches is 3:9 a.u. (arbitrary units). In the DRIE process,
not all actual depth of wafers which are denoted as yŒi � .i D

1; 2; � � � ; m/ are measured, only 1–2 wafers of a lot are selected
as sample wafers, whose depths are measured to monitor the
quality of the whole lot. Consequently, 36 wafers of process
data and their corresponding actual metrology depths can be
used as data in building and testing a VM model of the DRIE
process. Among these 36 glasses, we use three-fold cross val-
idation to evaluate the performance of developed VM model.
That means the whole data set is randomly divided into three
disjointed subsets of equal size 12, and the holdout method is
repeated three times. Each time, one of subsets is used as the
test set and the other two subsets are put together to form a
training set.

4.1. Performance test for the VM model

It is obvious that the cycle is the most important parameter
in the DRIE process: the cycle means the times of alternating
etching and passivation steps. The more cycles, the deeper the
depth of via. So, the cycle should be selected as a fixed para-
meter in the developed VM model. Then, the residual of this
model is used for further analysis.

eŒi � D yŒi � � OycŒi � D yŒi � � ˇ0 � ˇ1xcŒi �; (6)
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Fig. 4. Three-fold cross validation for VM. (a) First modeling part. (b) First predicted part. (c) Second modeling part. (d) Second predicted part.
(e) Third modeling part. (f) Third predicted part.

where yŒi � is the real depth and OycŒi � is the estimated depth ob-
tained by using only one cycle; xcŒi � 2 f200; 210g is the cycle;
ˇ1 is the regression coefficient of linear regression and ˇ0 is
a constant, and those coefficients can be obtained by standard
least square estimation; and i is the serial number of the wafer.

As mentioned above, features extracted by the proposed
methods may be inter-correlated. So, a stepwise regression ap-
proach is used to select the key variables.

eŒi � D ˇ2x1Œi � C ˇ3x2Œi � C � � � C ǰ C1xj Œi �; (7)

where ˇ2; � � � ; ǰ C1 are the coefficients; j is the number of

key variables; x1Œi �; � � � ; xj Œi � are the selected key variables.
Table 1 gives the details about the developedVMmodel. In

this work, the thresholds of the probability of type I error (i.e.,
˛in D 0:05; ˛out D 0:1) for stepwise regression are selected.
The VMmodel should give a good variance explanation of the
depth which is usually evaluated by the R2 statistics and ad-
justed R2 statistics (R2

adj). The p-value is also considered in
this stepwise regression, which measures the significance of
the best-fitting independent variable to be entered at an arbi-
trary step.

Shown in Table 1, the p-value is 0:052 and greater than
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Table 1. Explanation of the VM model in different steps.

Criteria Cycle No (%)
Residual for stepwise regression (%)

x1 x1; x2 x1; x2; x3 x1; � � � ; x4 x1; � � � ; x5 x1; � � � ; x6

R2 52.51 46.88 67.69 73.15 80.15 83.71 86.46
R2
adj 52.51 44.84 65.09 69.79 76.70 80.00 82.11

p-value — 0.0001 0.0001 0.037 0.009 0.039 0.052

Fig. 5. Data of sensor variable and its synchronization.

0:05 when the VM model includes x6, which means that x6

should not be included in the VM model. As a result of step-
wise regression, the bias RF voltage (x1), the constant item of
adjusted pressure (x2), the ESC temperature (x3), the chamber
temperature (x4) and the frequency item of IB2 (x5) are chosen
as key variables from all of the 44 features. The fitting capa-
bility in terms of R2 and R2

adj are maximized to 83:71% and
80:00% by setting the parameter set Œˇ0; ˇ1; � � � ; ˇ6� in Eq. (5)
to be Œ9:76; 0:12; �1:55; �0:24; �0:30; 0:69�.

Figure 4 shows the comparison between the real depth and
the predicted one using three-fold cross validation. The mini-
mum R2 and R2

adj of prediction results of this VM model are
72% and 66:4%. And the mean square error of prediction re-
sults are 0:0016, 0:001, and 0:0007 respectively. It can be seen
that the VM predictor is accurate enough to be implemented in
an actual DRIE process.

4.2. Model-based control of DRIE in a virtual plant

Although wafers were manufactured by the nominal iden-
tical DRIE process, most wafers were over-controlled (most
depths are greater than target) due to the lack of an online mea-
suring instrument. One shortcoming of the over-controlled pro-
cess is that it will increase the manufacturing cost. The another
is that it will increase the possibility of penetrating the whole
wafer which can cause the defective wafer. So, the field en-
gineers want to improve performance by adaptively adjusting
the process parameters run by run based on the information ob-
tained during the processŒ16�.

Given the above real time estimator, i.e., the depth con-
jecture model, it is hence feasible to install a model-based con-
troller to improve the quality of depth by estimating the optimal
cycle number. However, the application of a model-based con-
troller to real plant needs comprehensive considerations and

design. The virtual plant simulating the plant operational data
can be deemed as real as a genuine plant. This example uses
the following ways to build a virtual plant.

(1) First, a linear model based on the second batch of data
(including 22 wafers with 210 cycles) can serve as a virtual
plant based on the concept of reverse engineering.

(2) When the DIRE procedure has been implemented for
180 cycles, Equations. (2), (3) and (4) are used to extract the
features from the process sensors.

(3) The following deadbeat control algorithm can be im-
plemented.

xc Œi � D
� � yŒi � 1�

ˇ1

; (8)

where xc Œi � is the required cycles, ˇ1 is the slope linear model
identified by the above algorithm, and � is the target. The future
depth yŒi � 1� can be calculated by Eq. (5).

(4) Given the extracted features in the next operational
data, along with the cycle number calculated from the previ-
ous step, obtain the depth from the virtual plant.

Figure 5(b) illustrates the improvement of the depth using
the developed VMmodel. The figure reveals the results of how
to increase performance of depth by controlling the cycle num-
ber through a model-based controller. Compared with a real
DRIE process, themean square error decreases from 2:2�10�2

to 9 � 10�4. The control actions of the setting cycle number
taken by the model-based control to the virtual plant are shown
in Fig. 5(a). It can be seen that most of wafers don’t need 210
cyclical alternative etching and passivation steps to reach the
target. Production cost and implemented timewill be obviously
reduced.
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5. Conclusion

A data-driven depth estimator of the DRIE process based
on statistical identification of key variables is developed. Sev-
eral feature extraction algorithms are proposed to reduce the
dimensions of the original data collected from the FDC sys-
tem. Standard stepwise linear regression is adopted to identify
the key variables. The proposed algorithm is easy to maintain.
This study verifies the effectiveness of the proposed method by
using industrial examples. The application to the virtual plant
shows that the proposed approach is valid and feasible for the
industries. Substantial improvement of depth can be achieved
using this approach.
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