Vol. 33, No. 6

Journal of Semiconductors June 2012

An AES chip with DPA resistance using hardware-based random order execution™

Yu Bo(#1#)T, Li Xiangyu(%:#5), Chen Cong(Fk), Sun Yihe(# A1),
Wu Liji(% /17%), and Zhang Xiangmin(5k [[X)

Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University,
Beijing, 100084, China

Abstract: This paper presents an AES (advanced encryption standard) chip that combats differential power ana-
lysis (DPA) side-channel attack through hardware-based random order execution. Both decryption and encryption
procedures of an AES are implemented on the chip. A fine-grained dataflow architecture is proposed, which dy-
namically exploits intrinsic byte-level independence in the algorithm. A novel circuit called an HMF (Hold-Match-
Fetch) unit is proposed for random control, which randomly sets execution orders for concurrent operations. The
AES chip was manufactured in SMIC 0.18 pm technology. The average energy for encrypting one group of plain
texts (128 bits secrete keys) is 19 nJ. The core area is 0.43 mm?. A sophisticated experimental setup was built
to test the DPA resistance. Measurement-based experimental results show that one byte of a secret key cannot be
disclosed from our chip under random mode after 64000 power traces were used in the DPA attack. Compared with
the corresponding fixed order execution, the hardware based random order execution is improved by at least 21

times the DPA resistance.

Key words: differential power analysis; advanced encryption standard; dataflow; asynchronous design

DOI: 10.1088/1674-4926/33/6/065009

1. Introduction

In recent years, security has become a major requirement
for an increasing number of embedded systems, such as wire-
less handsets, smart cards and sensor networks. Side chan-
nel attacks (SCAs) have been developed to hack into cryp-
tographic devices through analyzing information leaked from
hardware implementations, such as power consumption[!],
computing timel?!, and electromagnetic radiation. Since the
power consumption of embedded devices can be easily mea-
sured by existing apparatus, power analysis has become a ma-
jor SCA method, and threatens to embedded systems, espe-
cially portable devices.

Simple power analysis (SPA)! guesses the secret keys ac-
cording to one single power trace of the devices. It is an effec-
tive SCA method only when the power traces are dependent
on secret keys, so it is not suitable for a symmetric algorithm
(e.g. AES) of which power traces are independent of secret
keys. Differential power analysis (DPA)!! deduces the secret
keys on the basis of the correlation existing between the power
consumption and internal states of the cryptographic device. It
measures multiple power traces from encryption or decryption
processes, and deduces secret keys by statistic analysis. Owing
to its effectiveness, DPA has become a major threat to devices
using symmetric encryption algorithms.

Several counter-measures have been developed to resist
DPA, including constant power circuits!*>!, masking tech-
niques!®, random execution[”8) and decoupling techniques!.
For counter-measures utilizing constant power circuits, mask-
ing and decoupling, extra circuits and operations are needed

EEACC:

1265Z

to make circuits consume constant power, mask intermediate
results and implement decoupling capacitors. As a result, a
large overhead of extra hardware resources and power con-
sumption are inevitably introduced. Random executionl”> 8101,
which randomly changes the execution time of each operation,
resists DPA through changing the certain relationship between
power and internal state at a particular time to a random one.
In general, implementing random execution does not need re-
dundant logic or extra mask operations, so random execution is
more economic in terms of hardware and power consumption.

Random execution has been employed by programmable
processors for DPA resistance. Rivain!”) proposed to randomly
insert dummy instructions in software programs to achieve ran-
dom execution. For such kinds of random execution, the execu-
tion order of operations is fixed and the power signature at each
possible execution time is only determined by the data. May!®!
proposed to utilize a superscalar architecture to achieve ran-
dom execution through out-of-order execution of parallel in-
structions. For random executions achieved by out-of-order ex-
ecution, the power signature is determined not only by the data
but also by the execution order. Consequently, out-of-order ex-
ecution introduces more uncertainty in the power profile, and
thus improves the DPA resistance. The DPA resistance of ran-
dom order execution is determined by the number of parallel
operations[!!] that can be randomly executed, so fully exploit-
ing intrinsic parallelism in algorithms is critical. However, for
cryptographic processors!®] using random order execution, ow-
ing to serially composed programs it is difficult to fully exploit
intrinsic instruction-level parallelism, even though extremely
complicated circuits for checking dependency have been em-

* Project supported by the National Natural Science Foundation of China (No. 61006021) and the Beijing Natural Science Foundation (No.

4112029).
1 Corresponding author. Email: yu-b06@mails.tsinghua.edu.cn

Received 5 December 2011, revised manuscript received 11 January 2012

(© 2012 Chinese Institute of Electronics

065009-1

J. Semicond. 2012, 33(6)

Yu Bo et al.

Plaintext (128 bits)

é; RoundKey[0]

SubBytes

&

ShiftRows

i

MixColumns

AddRoundKey é; RoundKey[i]

SubBytes

L

ShiftRows

AddRoundKey
é ; RoundKey[Nr]

Ciphertext (128 bits)

AddRoundKey

1 Round

1to Nr

1

Nr Round

Ciphertext (128 bits)

AddRoundK
oundhey éé RoundKey[Nr]

InvSubBytes

L

InvShiftBytes

Nr Round

AddRoundKeyé; RoundKey[i] -

InvMixColumns

L

InvSubBytes

L

InvShiftRows

AddRoundKeyG; RoundKey[0]

Plaintext (128 bits)

Nr —1to 1 Round

i

Fig. 1. The (a) encryption and (b) decryption procedure of an AES algorithm, where Nr can be 10, 12 or 14.

ployed.

In this paper, we propose a method for dedicated hardware
to utilize random order execution to improve DPA resistance,
which can lead to implementations with low hardware cost, low
energy consumption and high DPA resistance. An AES that is
the most popular symmetric encryption algorithm is taken as
an example to illustrate our method. A fine-grained, dataflow-
based architecture is proposed, in which operation-level par-
allelism in the algorithm is fully exploited. A novel circuit
structure called a Hold-Match-Fetch (HMF) unit is proposed to
randomly dispatch operands to operation units. Asynchronous
pipelines working in the data-driven manner are employed in
line with the dataflow structure.

The remainder of the paper is organized as follows. Sec-
tion II briefly introduces an AES algorithm and random order
execution. Section III presents the architecture of the chip and
the HMF unit. Section I'V describes the experimental setup, the
method for evaluating DPA resistance and evaluation results.
Section V concludes the paper.

2. Preliminary
2.1. AES algorithm

An AES algorithm is a block-based cipher. Data block size
is fixed to 128 bits and the key size can be 128 bits, 192 bits and
256 bits. The 128 bits data block, namely the state, is organized
as a 4 x 4 matrix of bytes.

The encryption process of an AES algorithm is shown in
Fig. 1(a). After the first AddRoundKey operation, the round
transformation including the SubBytes, the ShiftRows, the
MixColumns and the AddRoundKey, is applied to the state

Nr—1times. Nris 12, 14 or 16 corresponding to 128 bits, 192
bits and 256 bits keys respectively. The N r-th round transfor-
mation does not need the MixColumns operation. For the round
transformation, the SubBytes is a nonlinear substitution that
updates each byte of the state using a substitution table, namely
an S-box. ShiftRows is a circular shifting operation applied to
each byte of rows in the state. The offset of shifting on each
sub-state is determined by the row number. The MixColumns
operation is an invertible linear transformation in GF(2%), in
which each column of the state is multiplied by a matrix. The
AddRoundKey operation combines each byte of the state with
the corresponding RoudnKey using bitwise XOR logic. The
decryption algorithm is shown in Fig. 1(b). The InvSubBytes,
the InvShiftRows, the InvMixColumns and the InvAddRound-
Key are inverse operations to corresponding transformations in
the encryption process.

The RoundKeys used in encryption and decryption are
generated by the key expansion procedurel!'2!. For the AES al-
gorithm, the initial key consists of Nk words. Nk can be 4,
6, 8. The key expansion algorithm uses initial keys to generate
Nr + 1 RoundKeys. Each RoundKey is 4 x 4 bytes.

2.2. Random order execution

The DPA resistance of random order execution is deter-
mined by two factors!'!], (1) the number of parallel operations
that can be randomly executed, and (2) the most chance of an
operation to be executed at each possible execution time. Quan-
titatively discussing the DPA resistance of an out-of-order ex-
ecution is beyond the scope of this paper. In general, compared
with certain order execution, the DPA resistance can increase
O(N?) times if N operations can be uniformly and randomly

065009-2

J. Semicond. 2012, 33(6)

Yu Bo et al.

/ “ InvSubByte
2 InvShifiRow [.
: Y e BRI —
A > InvMixCol
\C
— =
RNG Round
U ring \
AddKey — 4
: :> SubByte
Update g shiftRow
HMF unit =
Input | I\
nput v
interface :> L
Out
Output utput
R Key iterface
v enerator
Initial key ¢ RoundKey
oW column sub-state
(2 bits) (2 bits) (8 bits)

Fig. 2. The hardware architecture (upper) and the token format (lower).

executed!!1].

In order to improve the DPA resistance of random exe-
cution, the intrinsic data independence and parallelism of an
algorithm should be fully exploited, and the number of paral-
lel operations that can be randomly executed should be maxi-
mized. In the case of an AES algorithm, AddRoundKey, Sub-
Bytes and ShiftRows are defined to perform operations at byte
level. 16 bytes of a state can be independently processed by
these operations. Although Mixcolumns involves linear mul-
tiplications between columns of a state and a constant matrix,
it can be decomposed into a set of independent byte-grained
multiplications and additions. As a result, the AES algorithm
can be performed at byte-level. For each round transformation,
16 byte-grained operations can be executed in any order, and
the results will not be affected by random execution. In order
to sufficiently utilize the intrinsic data independence in AES
and improve DPA resistance, our AES ASIC was designed to
perform operations at byte level.

3. Hardware design

3.1. Dataflow-based architecture

Dataflow architectures!'® execute operations according
to data-flow graphs (DFG) of algorithms, which consist of a
set of nodes and arcs representing operations and data depen-
dency between operations respectively. For dataflow architec-
tures, operations are executed in a data-driven way that opera-
tions can be executed only when all the inputs are available. It
does not explicitly specify the execution order of operations, in
which all the ready operations that satisfy the executing con-
dition can be performed in parallel or in any order. Therefore,
dataflow architectures can naturally exploit parallel operations

at run time, and are more suitable for random scheduling than
control-flow computing.

Inspired by dataflow computing, a dataflow architecture
that implements an AES algorithm is proposed as shown in
Fig. 2. It consists of input and output interfaces, Round Ring
and Key Generator. The input interface sends data and keys to
the Round Ring and Key Generator, which implement round
transformation and key expansion respectively. The Key Gen-
erator computes round keys, which are stored inside the Key
Generator and supplied to the Round Ring.

Operations of the round transformations are implemented
by corresponding hardware units in the Round Ring. These
hardware components are all fine-grained and work in the data-
driven way, and are connected by channels (lines with arrows
in Fig. 2) according to the data-flow graph of round transforma-
tion to form a ring structure. The ring structure performs each
loop of round transformation. ‘Mux’ and ‘demux’ are switch-
ers that select data paths for encryption and decryption process.
The HMF unit implements random order dispatching in the dy-
namic data-flow way. At the very beginning of the working
stage, all the sub-states for first round transformation are avail-
able and stored in the HMF unit. It then randomly dispatches
these sub-states into the Round Ring. The dispatching order is
determined by random numbers generated by an on-chip ran-
dom number generator (RNG). During the working stage, sub-
states are stored back to the HMF unit when one round trans-
formation is accomplished. The HMF unit keeps checking if
there are sub-states ready for the next round transformation.
The available sub-states for the next round transformation are
also randomly dispatched. If the round transformation of a sub-
state is accomplished, the “‘update unit’ outputs the sub-state to
the output interface. Otherwise it passes the sub-state to the
next unit in the Round Ring. After the encryption or decryp-

065009-3

J. Semicond. 2012, 33(6) Yu Bo et al.
Matcher Rand nyimber — d1n [_Re_glsgrs_ |
| arbiter ‘Addrgss| token data| , [T 7 | dout0 dout,
TTT wwresT : token ek oy 2 | 3 cE'—»I
Tatch y lock Fetcher g din | | : % dout
| ate [waddr L= | req dout 1|d0m‘1 g ;
e o -
ki scccee 3 mux fetch o ;o cin reqo | d;'_) I
ey re % : == = =2
flag | Lﬂmzlztchmg ack q E Flags ! raddr
- 22 | clear ack req red, flag,
ol flags clear SNy H; }:) | clear,
oken T clear |
req Holder address token L2 | 0 é clear
ack data 5| pack Ri— é 3 | ﬂag clear Jear, |
L fe—t ﬂagn L ! clear =
Outputs of , T
matching logic —28108 Pad _valid)<\L Fig. 4. The structure of the Holder.
fetch
lock L
clear tecture is shown in Fig. 2. The position of each sub-state is
req determined by the 2-bits row field and 2-bits column field that
ack represent the row number and column number of the sub-state.

Fig. 3. The structure of (a) the HMF unit and (b) the time sequence
diagram of the fetching process.

tion finishes, all the sub-states are stored in the output interface,
which outputs results serially in the fixed order.

Asynchronous circuits were employed to implement the
dataflow architecture. It works in a data-driven way!'#), which
is in line with the behavior of dataflow architecture. Owing to
the absence of the clock signal, it is difficult to determine the
exact execution time of an operation in an asynchronous de-
sign. The uncertainty of execution time makes accurate power
analysis of a particular operation become more difficult, and
thus a DPA attack needs to make more effort to hack into the
chip. In our design, the channels between components are im-
plemented by the four-phase bundle-data handshake protocol,
which achieves communication and distributed control. Com-
pared with other commonly used asynchronous circuits, such
as quasi delay insensitive (QDI) circuits in dual rail or m-of-n
codes('¥l, asynchronous circuits based on bundle data protocol
use conventional data processing elements that can be designed
and implemented using traditional EDA tools and design flows
for standard cells(']. In addition, QDI based computing ele-
ments in dual rail or m-of-n codes require redundant circuits for
coding the completion signal for handshaking, which increase
the area and power consumption of the design. For these rea-
sons, circuits based on bundled data handshake protocols were
used in our design.

3.2. Token format

Unlike synchronous designs that can utilize an FSM (finite
state machine) for global control, our asynchronous dataflow
architecture should employ distributed control mechanism due
to the lack of a global clock. In the architecture, control infor-
mation is packed with data to form tokens and is used as tags
for each token. These tags are used to facilitate distributed com-
puting and differentiate tokens. For the proposed architecture,
position information of each byte in the state is required to per-
form AddRoundKey, SubBytes, ShiftRows and MixColumns.
As a result, position information is packaged with data to form
tokens in the architecture. The format of tokens in the archi-

The eight least significant bits in the token are the data field.

3.3. Hold-Match-Fetch unit

The HMF unit is the key element in our design. The struc-
ture of the HMF unit is shown in Fig. 3(a), which consists of
the Holder, the Matcher and the Fetcher. It implements ran-
dom order dispatching in the data driven way. Tokens com-
ing from the input interface or Round Ring are stored in the
Holder. Available tokens in the Holder can be automatically
detected by the Matcher. The Matcher will then randomly se-
lect one ready token according to a random number generated
by the RNG. According to the address of the selected sub-state,
the Fetcher reads the data from the Holder and sends it into the
Round Ring for round transformation. Thus, the round trans-
formation is performed on sub-states in an out-of-order way.

The Holder stores tokens for round transformation. Dif-
ferent from general register files, the Holder not only registers
tokens but also flags whether tokens are available. There is one
storage unit and one flag unit corresponding to each sub-state
as shown in Fig. 4. The flag unit is a C-element!'¥ of which
the output is the flag signal. Each flag signal becomes ‘1 after
the data is written into the corresponding register, and the flag
signal becomes ‘0’ after the data is read out. The token writ-
ing process is controlled by the handshake between ‘cin’ unit
and flag units. In a writing process, according to the address
extracted from the token, the ‘cin’ unit generates a request sig-
nal, req; i € [1,n — 1], for the flag C-element, C;. The request
signal, req;, is also the latch signal for the register, R;. After the
data is stored into R;, the output of the flag C-element, flag;,
goes high and acknowledges the completion of the writing pro-
cess to the ‘cin’ unit.

The structure of the Matcher is shown in Fig. 3(a). The
‘matching logic’ performs logic-AND on flag signals from the
Holder and key flag that indicates the availability of round
keys. The outputs of match logic indicate which pairs of sub-
state and key are ready for AddRoundKey. According to the
results of match logic and the random number, the arbiter ran-
domly selects one ready sub-state and outputs the address of
the selected sub-state to the Holder. According to the address,
the sub-state is read from the Holder.

In this paper, we use the R-box[!6! to build the arbiter, as

065009-4

J. Semicond. 2012, 33(6)

Yu Bo et al.

R-box

10— L A
n—
R - al

~~~~~~~~~ Rl |
b : A2
b2 11 Al a7 3 JR1 LRO

R-box a3 —| mux

L 10 y A2 AL
- Al RO a2 ML= i
b1 T 35:@_ arbiter

Al Rbox A%  al a0
b2 muxl ad A2
b 10 20 —| mux0 |

(@) (b)
dis
: A3 R2 [R1 |RO
: a5y AR IRUR
H a7 rel —>
ds
dz ddlg .. 8 bits arbiter ﬂ)
M s A3
; =m0 o
0

=3

(©

Fig. 5. (a) R-box[!®] and 4-bits arbiter, (b) 8-bits arbiter, (c) 16-bits
arbiter.

Table 1. Truth table of the R-box.

10 11 R A
0 0 X 1
1 0 X 0
0 1 X 1
1 1 0 0
1 1 1 1

shown in Fig. 5(a). The truth table of the R-box is shown in
Table 1. When ‘In0’ and ‘Inl’ are both ‘0’, the output of R-
box, ‘A’, is ‘1°. If either ‘In0’ or ‘Inl’ is ‘1°, ‘A’ is the address
of the input with the value of ‘1°. When ‘In0’ and ‘Inl’ are
both ‘1’, the value of ‘A’ equals the value of ‘R’, which is a
random number. In other words, when both inputs are ‘1°, ‘R’
randomly selects the address of one input. Based on the R-box,
n-bit arbiters can be built. Fig. 5 show how a 16-bit arbiter is
built hierarchically, which is used in our chip. For the 16 bit
arbiter, as shown in Fig. 5(c), ‘R0’, ‘R1°, ‘R2’ and ‘R3’ are
random signals. The outputs, ‘A0’, ‘A1°, ‘A2’ and ‘A3’, are the
address of randomly selected input signals. When all the inputs
are ‘0’, the output address is ‘1111°. If more than one input is
‘1’, the output address is determined by the random number.
When ‘d15’ is ‘1’ and selected by the arbiter, the output address
is ‘1111” and the fetch signal is high. When all the inputs are
‘zero’, the output address is also ‘1111°, but the fetch signal
will not go high, so the two cases with the same output value
can be differentiated.

If one or several outputs of match logic become high, the
fetch signal goes high and activates the 4-phase bundle data
pipeline in the Fetcher unit, as shown in Fig. 3(a). The output
of Cy goes high and sets the lock signal to ‘1°, which locks the
latch in the Matcher to make sure the output of the Matcher
will not change. After the lock signal becomes one, the output
of arbiter will be stable. The data retrieved from the Holder will

be stable. The delay unit in the Fetcher is to make sure a stable
sub-state can be correctly retrieved from the Holder and stored
in the output register. In order to obtain the sub-state correctly,
the delay unit should satisfy the following relationship,

Tdelay + Tc,element < 7—‘or + Tarbiter + Tread + Tsetup» (1)

where Tyclay, T¢_clement and T are the propagation delays of the
delay unit, C-element and logic-or gate. Typiter 1S the delay of
the arbiter for generating a stable address signal. Tie,q is the
time required to read a sub-state from the Holder. Tyt is the
setup time of the output register.

The retrieved token is locked in the output register by the
output of C;, which also sets the clear signal to high. The clear
signal handshakes with the flag C-elements in the Holder and
resets the flag signal to ‘0’. Because the selected flag signal
becomes ‘0’, the fetch signal returns to zero. The outputs of Cy
and C; return to ‘0’ in sequence due to the handshake protocol.
After the lock signal is reset to ‘0’ by C,, the latch becomes
transparent and the arbiter starts to select another available sub-
state according to the flag signals. The time sequence diagram
of the fetching process is shown in Fig. 3(b).

4. Evaluation and results

4.1. Chip implementation

The AES chip was designed using standard library cells
and fabricated in SMIC 0.18 um technology. The photograph
of the fabricated chip is shown in Fig. 6(a). Since the stan-
dard library does not contain C-elements, we designed the
C-element in the full custom way and added it to the stan-
dard library. Although the chip is an asynchronous design,
synchronous design tools, Synopsys Design Compiler and IC
Compiler, were utilized for the logical synthesis and physical
synthesis according to the method proposed by us[!3].

The chip supports standard encryption and decryption de-
fined in AES. In order to evaluate the improvement on DPA re-
sistance by utilizing random order execution, the chip has two
working modes, random mode and normal mode. An LFSR
(linear feedback shift register) based pseudo-random number
generator is employed to support both the mode and generate
random number needed by the HMF unit. The length of the
LFSR is 64 bits, and the feedback polynomial is x4 + x63 4
x61 4 x®° 4 1. The initial seed of the LFSR is set through an
input interface. In normal mode, the initial seed of the LFSR is
set to zero, and the chip executes operations in a fixed order.
In random mode, the initial seed is set to a random number. In
practical applications, true random number generators should
be integrated to guarantee out-of-order execution in the chip.

4.2. DPA resistant evaluation

4.2.1. DPA attack experimental setup

The measurement and DPA attack setup is shown in
Fig. 6(b). The FPGA board receives plain texts or cipher texts
and secret keys from a PC and sends them to the AES chip. The
FPGA also controls the chip to perform encryption or decryp-
tion under random or normal mode. A small resistor is placed
between the power source and the VDD port of the chip. The

065009-5



J. Semicond. 2012, 33(6)

Yu Bo et al.

(b)

Fig. 6. (a) The photograph of the chip. (b) DPA attack experimental
setup.

voltage across the resistor is measured by the oscilloscope. The
oscilloscope sends recorded traces to a PC for further analysis.

4.2.2. DPA attack method

DPA attacks were carried out on the AES chip under both
random mode and normal mode. The target operations of the
DPA are the S-boxes of the first round. In our DPA attack for
the normal mode (operations are executed in a certain order),
the estimation of the power consumption of S-boxes is com-
pared with the measured power consumption of the chip. In
line with Ref. [3], we use the Hamming distance of S-boxes to
represent the estimation of power consumption. The attack pro-
cedure is formulated as follows. Let Py, Ki and K;_be the k-th
byte of plain texts (inputs of the chip), correct key and guesses
of the correct key. Since Ky is 8 bits, there are 256 possibili-
ties for K; and 256 possible estimated power signatures. The
group of power signatures of various guesses, Pegtimate, Can be
formulated as,

Sk = SubByte(AddRoundKey( Py, K})), )
Pestimate = HamDist(Sk, Sk—l)s k e [1’ 16]7 (3)

where Sy is the result of the k-th S-box.

Let Peasure be the actual power consumption of the tar-
get operation. The correlations between power measurements,
Prrcasure, and the 256 variants of Pegimate are calculated in the at-
tack. The K with the highest correlation is selected as the cor-
rect key. In general, the correlation obtained from a few mea-
surements is inaccurate due to the power noises contributed by
other operations. In order to filter the noise, thousands of plain
texts should be generated to perform the attack.

Because the output of the SubByte unit can be reset be-
fore starting encryption or decryption (Sy is 0), the Hamming

(a) ——— Correct keys
04 —— Maximum of other keys
031 T
5
= 02F e
> \é’M
g -7
S 0.1p
0 -
_01 -
| | | | | | |
4000 6000 8000 10000 12000 14000 16000
Number of measurements
0.25 (b) - — - Correct keys
—— Maximum of other keys
0.20
& 015F
=
L
o
3 o010l
0.0sF T TTTTTT ot
| | | | | |
0 1 2 3 4 5
Number of measurements x10*
0.25
(©) - — - Correct keys
—— Maximum of other keys
0.20 w
& 015f
E
e
S 010 ]
0.05 - T
0 | | | | | |

1 2 3 4 5 6
Number of measurements x 10

Fig. 7. Attacks on the chip (a) under normal mode and (b) under ran-
dom mode. (c) Windowing attack under random mode.

distance of the first S-box equals the Hamming weight, which
is the result of the first S-box and can be calculated. Conse-
quently, our attack first targets on the first byte of keys. After
obtaining the first byte of keys, our attack is performed on the
other keys accordingly.

We used the same method to attack the chip under random
mode. Due to random order execution, the first SubByte opera-
tion may not be performed on the first sub-state. As a result, the
Hamming distances of the first SubByte may be incorrectly cal-
culated under random mode. The incorrect Hamming distance
makes DPA attacks more difficult. The windowing attack that
can reduce attacking efforts!”) was also carried out on the chip
under random mode. It integrates the power consumption in the
period that covers all possible execution times of the target op-

065009-6



J. Semicond. 2012, 33(6) Yu Bo et al.
Table 2. Comparison with previous works.
Reference Ref. [6] Ref. [3] Ref. [9] This work
Process (um) 0.18 0.18 0.13 0.18
Function encryption encryption encryption encryption and decryption
Equivalent gates 2 % 10* 5.96 x 10° 6.9 x 10° 1.5 x 10*
Throughput (Mbps) 4 990 1280 20
Throughput/Gates 200 1661 1855 1333(2000)?
(bps/gate)
Energy (nJ/encryption) 115 129 4.8(15)! 18
DPA countermeasure masking power constant logic decoupling random order execution

Design strategy standard cell

WDDL logic library,
specific routing tool

standard cell,
asynchronous design

analogue design

1 The estimation of energy consumption if the design were fabricated in 0.18 um technology.

20nly consider the gates (2/3 of total number of gates) for encryption.

eration. The integrated results are used to calculate correlation
with Hamming distances.

4.2.3. DPA resistant evaluation

In line with Ref. [3], the DPA resistance of the chip is quan-
tified by the number of measurements to disclosure (MTD).
In general, compared with wrong key guesses the power esti-
mated by the correct key should have the highest correlation
with the measured power signature. However, owing to the
power noises contributed by other operations, the highest cor-
relation may not correspond to the correct key when the num-
ber of samples (power signatures) is small. In order to reveal
the real correlation between estimated power and measured
power, the number of samples for DPA attack needs to be large.
When the number of samples is large enough, the correlation
obtained by the correct key will larger than that obtained by
wrong guesses. The MTD is defined as the number of samples
when the correlation coefficient of the correct key and the max-
imum correlation coefficient of other wrong key guesses have
a crossover, and the correct key has the largest correlation after
the crossover. It means that the keys with the highest correla-
tion can be considered as the correct key when the number of
power traces is larger than the MTD.

The MTD curves of the first byte of the secret key under
normal mode are shown in Fig. 7(a), which shows that in nor-
mal mode the first byte of the key can be disclosed using around
3000 power traces. Figure 7 shows the correlation curves under
random mode using non-windowing and windowing attacks re-
spectively. From the figure, we can see that the two curves
are closer to each other in windowing attacks, so windowing
attacks are more effective than non-windowing attacks. How-
ever, although a windowing DPA attack was used, the key can-
not be obtained after 64000 power traces, as shown in Fig. 7(c).
As a result, the proposed hardware based random order execu-
tion improves by least 21 times the DPA resistance when com-
pared with the corresponding fixed order execution.

4.3. Chip performance comparison

Table 2 summarizes the results of the fabricated chip
and compares previous work employing other DPA counter-
measures. In terms of functionality, our chip implements both
standard encryption and decryption while other works only
have an encryption function. In order to improve DPA resis-
tance, our chip employs a fine-gained architecture to increase

the number of operations for random execution. Owing to the
fine-grained structure, our chip has the smallest die area. How-
ever, because of serially executing fine-grained operations, the
throughput of our design is also compromised. In order to eval-
uate the tradeoff between throughput and area and make a fair
comparison with other designs, we use the metric, Through-
put/Gates, for comparison. Since other works only have an
encryption function, and the decryption circuits of our design
takes up around 1/3 of the area, we use 2/3 total gates for the
evaluation. The metric of our design is the highest. It means
that our design can achieve the best throughput when using
the same amount of hardware resources. This further implies
that our DPA counter-measure introduces less hardware over-
head than counter-measures used by other designs. Our chip
consumes 18 nJ for one encryption, which is higher than the
smallest one (around 15 nJ)[! that uses a decoupling technique.
However, our chip implements both encryption and decryption
circuits. Decryption circuits also contribute power consump-
tion to the encryption process because they increase the equiv-
alent capacitance. If only considering the encryption circuits,
our design may be more energy efficient than that in Ref. [9].
Considering the evaluation results in Table 2, our design suits
applications that have astringent area, energy constraints, and
high DPA resistance and low throughput requirements.

5. Conclusion

In the paper, a novel AES chip with hardware-based ran-
dom order execution is presented to enhance DPA resistance.
Fine-grained computing is utilized to sufficiently exploit in-
trinsic operation-level independencies in the algorithm. Dy-
namic dataflow architecture is proposed to implement random
order execution. Owing to the fine-grained structure and data-
driven computing, the chip is characterized by small area and
low energy consumption. Compared with the fixed order exe-
cution, the DPA resistance of our chip is greatly enhanced.

References

[1] Kocher P, Jafte J, Jun B. Differential power analysis. Advances
in Cryptology, Leture Notes in Computer Science, 1999, 1666:
388

[2] Kocher P. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. Advances in Cryptology, Leture
Notes in Computer Science, 996, 1109: 104

065009-7



J. Semicond. 2012, 33(6)

Yu Bo et al.

[3] Hwang D D, Tiri K, Hodjat A, et al. AES-based security copro-
cessor IC in 0.18-pum CMOS with resistance to differential power
analysis side-channel attacks. IEEE J Solid-State Circuits, 2006,
41(4): 781

[4] Han Jun, Zeng Xiaoyang, Tang Tiangao. VLSI design of anti-
attack DES circuits. Chinese Journal of Semiconductors, 2005,
26(8): 1646

[5] Li Xiangyu, Sun Yihe. DPA resistant power-balanced adder for
a cryptographic IC. Chinese Journal of Semiconductors, 2005,
26(8): 1629

[6] Pramstaller N, Gurkaynak F K, Haene S N, et al. Towards an AES
crypto-chip resistant to differential power analysis. Proceedings
of the 30th European Solid-State Circuits Conference, 2004: 307

[7] Rivain M, Prouff E, Doget J. Higher-order masking and shuffling
for software implementations of block ciphers. Cryptographic
Hardware and Embedded Systems, Leture Notes in Computer
Science, 2009, 5747: 171

[8] May D, Muller H L, Smart N P. Non-deterministic processors.
Information Security and Privacy, Leture Notes in Computer Sci-
ence, 2001, 2119: 115

[9] Tokunaga C, Blaauw D. Secure AES engine with a local
switched-capacitor current equalizer. IEEE International Solid-
State Circuits Conference, 2009: 64

[10] Yu Bo, Li Xiangyu, Zhang Naiwen, et al. A low cost, low power
AES ASIC with high DPA resisting ability. IEEE Asian Solid-
State Circuits Conference, 2009: 285

[11] Mangard S, Oswald E, Popp T. Power analysis attacks. Springer,
2007

[12] Daemen J, Rijmen V. The design of Rijndael: AES-the advanced
encryption standard. Springer, 2002

[13] Veen A H. Dataflow machine architecture. ACM Computing Sur-
veys, 1986, 18(4): 365

[14] Jens S, Steve F. Principles of asynchronous circuit design: a sys-
tems perspective. Boston: Kluwer Academic Publishers, 2001

[15] Li Xiangyu, Sun Yihe. Optimize asynchronous design by syn-
chronous synthesis tool (in Chinese). Journal of Computer-Aided
Design and Computer Graphics, 2006, 18(8): 1098

[16] May D, Muller H L, Smart N P. Random register renaming to foil
DPA. Cryptographic Hardware and Embedded Systems, Leture
Notes in Computer Science, 2001, 2162: 28

065009-8



