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Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs
superlattices�
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Abstract: A discrete sequential tunneling model is used for studying the influence of the doping density on the
dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-
sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical
hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly
depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density.
By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasi-
periodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes.
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1. Introduction

Over the last few years, electron vertical transport in super-
lattices (SLs) has been attracting growing interest and has seen
great theoreticalŒ1�8� and experimentalŒ9�11� progress. A vari-
ety of new electronic devices can be created based on the study
of the novel physical properties of SLsŒ12�14�. The main elec-
tron transport mechanism in weakly coupled n-doped semicon-
ductor SLs is dominated by sequential resonant tunneling be-
tween adjacent quantum wells. This has been shown to exhibit
a rich variety of strongly nonlinear behaviorsŒ2�6; 15�18� driven
by external fields. Owing to the formation of the electric-field
domain in SLs, the system shows two different states: one is
self-sustained current oscillations (SSCOs) due to the periodic
motion of electric field pulse, and the other is a sawtooth-like
current–voltage characteristic with many branches associated
with static electric field domains (EFDs) when an electric field
F is applied along the SL. This is attributed to the pronounced
negative differential velocity (NDV) in the electron drift ve-
locity vd versus F characteristic, which is always related to
the transport instability. Controlled by the external magnetic
fields and the sample temperature, etcŒ17�19�, the NDV curve
changes. Consequently, SSCOs are induced in weakly coupled
SLs only with appropriate doping and biasing, i.e. in a certain
range of the doping level ND and the bias voltage Udc

Œ2; 17; 19�.
Outside this range, a buildup of stable EFDs for higher carrier
concentrations, or a state of almost uniform electric field dis-
tribution at lower carrier concentrations, existsŒ17�. As the AC-
voltage is applied, the system shows different complex dynam-
ical behaviors including the period, frequency-locking, quasi-
periodicity, and chaos due to strong mixing of internal current
oscillations in SLs and the external ac signal.

In this paper, we focus on the hysteresis loop change in
the dynamical current density–voltage .J –U / curve, which
strongly depends on the doping density. The electron drift ve-
locity is plotted as a function of the electric field. It exhibits
NDVwhich means that the SL is a nonlinear system, and inter-
esting dynamical features can be found. As expected, a hystere-
sis region exists, which depends on the doping density, becom-
ing wider as the latter increases. For different initial values of
SLs in the hysteresis region, the states switch from oscillatary
to stationary. Finally, an ac voltage is used to drive the system
which exhibits different oscillation modes shown by the phase
diagram and corresponding Poincaré maps.

2. The model

Consider a system consisting of N quantum wells driven
by a bias voltage perpendicular to the layers. The tunneling
electron drift velocity vm!mC1 from well m to well mC1 only
depends on the electric field Fm. The calculated normalized
electron drift velocity as a function of the electric field is de-
picted in Fig. 1. Clearly, the curve of velocity vd.F / has a max-
imum corresponding to the occurrence of the electron resonant
tunneling, and the region from F D 1 to F D 1.31 exhibits
NDV.

The dynamics of SLs is governed by the following discrete
Poisson equations,

1

l
.Fm � Fm�1/ D

e

"
.nm � ND/; (1)

".Fm � F0/=.el/ D n1 � ND D ıND; (2)
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Fig. 1. Normalized electron drift velocity vd as a function of the elec-
tric field.

and the current continuity equation, the applied voltage bias
conditions between the emitter and collector:

"
dFm

dt
C enmvd.Fm/ D J.t/; (3)

l

NX
iD1

Fm D U.t/: (4)

In the spatially homogeneous case, the value of nm and
nmC1 is equal to the doping density ND, i.e. nm D nmC1 D

ND. Equation (2) is the boundary condition with ı as a model
parameter. Herem D 1; 2; : : : ; N is the well index,F0,FN cor-
respond to the electric fields at the emitter and collector, and
" and e are the permittivity and electron charge, respectively.
The total current density J.t/ is the sum of the displacement
current and the electron flux via a series of sequential reso-
nant tunnelings. The total applied voltage U.t/ in Eq. (4) can
be written as U.t/ D UdcŒ1 C A sin.2�fdt /� with Udc is the
DC voltage, A and fd are the relative amplitude and driving
frequency of an ac bias signal.

To make a convenient calculation, the variables are dimen-
sionalized as follows:

˚m D Fm=F1�2; F1�2 D .E2 � E1/=.el/; n0 D

"F1�2=.el/; � D ND=n0; ttun D l=vd.F1�2/; � D

t=ttun; w D 2�fdttun; V D Udc=.F1�2lN / and a D

AV .
Combining Eqs. (1)–(4), we obtainN dimensionless equa-

tions for the electric field.

d˚m

d�
D

1

N

NX
j D1

vd.˚n/Œ˚n � ˚n�1 C �� � vd.˚n/

� Œ˚m � ˚m�1 C �� C aw cos.w�/: (5)

Equation (5) can be solved by the fourth-order Runge-
Kutta method.

3. The hysteresis loop in the dynamical current
density–voltage curve

We simulate numerically an N D 30 weakly GaAs/AlAs
(n-doped/undoped) SL with a w D 9.0 nm GaAs well and d

D 4.0 nm AlAs barriers, i.e. the period of the SL l D 13.0 nm.
The difference between the first excited state and the ground
state is � D E2 � E1 D 135 meV. The lattice temperature is
fixed at T D 20 K, and the value ı D 0:001.

Following the initial transient behavior, the current den-
sity J.t/ either reaches a constant value or oscillates between
minima Jmin and maxima Jmax, which depend on the bias Udc
and the doping density �. Figures 2(a)–2(d) show the J.U /

curves calculated at different doping densities � D 0:045,
0.065, 0.085, and 0.105. For all �, each trace is single-valued
at low Udc and the stationary behavior occurs. But when Udc
exceeds a critical value Uc, which depends on �, the station-
ary state loses its stability via Hopf bifurcation and J.t/ starts
to oscillate corresponding to multiple values in the shaded re-
gions. The states of the system will be transformed between
static and dynamic at the left,Uci (i D a, b, c, and d), and right,
Uij .j D 1, 2), bifurcation point, denoted by the arrow in Fig. 2.
In contrast with the upper and lower figures in Figs. 2(a)–2(d),
respectively, the corresponding value Uci is associated with the
left bifurcation point. However, the value of the right bifurca-
tion point corresponding to the applied voltage Uij is different,
which indicates that the hysteresis loop is produced in the dy-
namical current density–voltage (J –U / curve.

Now, we consider in detail how the width of the hystere-
sis loop varies with different doping densities. For � D 0:045,
J.t/ starts to exhibit periodic oscillations up to Uca D 31:404.
When the control parameter increases to Ua1 D 35:078, the os-
cillation disappears and the system transforms to a stable equi-
librium state. On the other hand, with a decrease of the con-
trol parameter Udc, the oscillation does not occur until Ua2 D

34:790. Comparing with the change in voltage, this means that
the hysteresis loop exists and its range is Ua1 � Ua2 D 0:288.
The J –U curves calculated for � D 0:065, � D 0:085,
and � D 0:105, are very similar to those for � D 0:045

(Fig. 2(a)). The corresponding ranges of the hysteresis loop are
Ub1�Ub2 D 1:055,Uc1�Uc2 D 2:905, andUd1�Ud2 D 5:250.
Hence, the range of the hysteresis loop changes with doping
density, becoming wider for a higher doping concentration. If
the applied voltage is set in the hysteresis range and takes dif-
ferent initial values, the nonlinear system can evolve into dif-
ferent types of attractor: a zero-dimensional attractor of a fixed
point or a one-dimensional attractor of a limit cycle.

4. Chaotic dynamics due to the frequency cou-
pled between the internal oscillations and ex-
ternal ac signals

In this section, the dynamics of the system is investigated
by varying the dc and ac voltage, i.e. the applied voltage can
be written as U.t/ D UdcŒ1 C A sin.2�fdt /�. An inherent fea-
ture of periodically forced nonlinear systems is that the actual
oscillation frequency depends on the amplitude of the forcing.
Therefore both the frequency fd and the amplitude A of the
driving can be used as control parameters to study nonlinear
dynamics. The dc voltage is chosen as Udc D 35:7 V, and the
doping density � D 0:05. The relative amplitude is fixed at
a D 0:08, and the driving frequency 0 < fd=f0 < 2:4, where
f0 D 0:0122=ttun is the natural current oscillation frequency.
Such a choice is sufficient to describe the interesting nonlinear
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Fig. 2. Hysteresis loops in the current density–voltage .J –U / curve for different doping densities. (a) � D 0:045. (b) � D 0:065. (c) � D 0:085.
(d) � D 0:105.

dynamical behaviors.

The Poincaré map in the current density versus the driv-
ing frequency fd=f0 space is used to study the dynamics of
the system. Let Td D 1=fd be the driving period and sample
the current density Jn at times Tn D nTd, n D 1; 2; : : : (after
waiting enough time for the transients to have decayed). For
each fd, we calculate Jn D J.nTd/ until the solution becomes
stable within a 10�5 accuracy. At that time, stop the simula-
tion and record all the Jn corresponding to one period of the
solution. Thus, the Poincaré map is obtained with the change
in driving frequency as shown in Fig. 3. The oscillation modes
can be estimated by the number of points in the Poincaré bi-
furcation diagram. For a period-n solution, they appear as sim-
ple closed loops in the phase diagram, and n separate points
in the Poincaré map. But for chaos, the phase diagram and the
Poincaré return map will be more complicated. From Fig. 3,
the system displays a period-1 oscillation which corresponds
to one point in the Poincaré map at the beginning of 0 <

fd=f0 < 0:763. With a further increase of the driving fre-
quency to 0:763 6 fd=f0 < 2:075, the system displays differ-
ent nonlinear dynamics such as period-n and chaos. The phase
portraits and corresponding Poincaré map for period-2, period-
4, chaos and period-3 are plotted in Figs. 4(a)–4(d) with differ-
ent driving frequencies: fd=f0 D 0.793, 1.188, 1.42, and 1.81,
respectively. In the case of 2:075 6 fd=f0 < 2:4, the route
of an inverse period-doubling to chaos is deduced. The corre-
sponding dynamical behaviors are shown in Figs. 5(a)–5(d) for

Fig. 3. A Poincaré bifurcation diagram of the current density Jn versus
the driving frequency 0 < fd=f0 < 2:4 with the doping density � D

0:05.

driving frequencies of fd=f0 D 2.273, 2.164, 2.135, and 2.081,
respectively.

5. Conclusions

The dynamics of a traveling electric field domain in a bi-
ased weakly coupled SL can be controlled by the doping den-
sity �. In the dynamical current density versus voltage (J –U /
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Fig. 4. Phase portraits (left) and the corresponding Poincaré map (right) for different frequencies. (a) fd=f0 D 0.793 (period-2). (b) fd=f0 D

1.188 (period-4). (c) fd=f0 D 1.42 (chaos). (d) fd=f0 D 1.81 (period-3).

curve, a hysteresis loop occurs, whose range is affected by the
doping density. For a value � D 0:045, the hysteresis range
exists but its range Ua1 � Ua2 D 0:288 is not obvious. With a
further increase of � to 0.065, 0.085, and 0.105, the hysteresis
range increases to Ub1 � Ub2 D 1:055, Uc1 � Uc2 D 2:905, and
Ud1 � Ud2 D 5:250, respectively. In addition, an ac voltage
is applied to drive the SL and it exhibits complex dynamical
behaviors due to frequency coupled between the internal cur-
rent oscillations and the external ac signal. A Poincaré bifurca-
tion diagram is plotted to detect the oscillation modes such as
frequency-locking, quasi-periodicity, period and chaos.
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