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Preparation of rare-earth element doped Mg2Si by FAPAS�
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Abstract: Rare-earth elements (Re) Sc and Y doped Mg2Si thermoelectric materials were made via a field-
activated and pressure-assisted synthesis (FAPAS) method at 1023–1073 K, 50 MPa for 15 min. The samples
created using this method have uniform and compact structures. The average grain size was about 1.5–2 �m, the
micro-content of Re did not change the matrix morphology. The sample with 2500 ppm Sc obtained the best See-
beck coefficient absolute value, about 1.93 times of that belonging to non-dopedMg2Si at about 408 K. The electric
conductivity of the sample doped with 2000 ppm Y becomes 1.69 times of that of pure Mg2Si at 468 K, while the
former had a better comprehensive electrical performance. Their thermal conductivity was reduced to 70% and 84%
of that of non-doped Mg2Si. Thus, the figure of merit and ZT of these two samples were enhanced visibly, which
were 3.3 and 2.4 times of the non-doped samples at 408 K and 468 K, respectively. The maximal ZT belonging
to samples doped with 2500 ppm Sc went up to 0.42 at about 498 K, higher than 0.40 of sample doped with 2000
ppm Y at 528 K and 0.25 of non-doped Mg2Si at 678 K, and the samples doped with Sc seemed to get the best
thermoelectric performances at lower temperature.
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1. Introduction
Thermoelectric materials, as kinds of functional material

which can convert heat to electricity directly or reversely, are
of interest for applications as cooling devices and power gen-
erators. Magnesium silicide (Mg2Si), having a face-centered
cubic CaF2 type of structure, has been identified as a promis-
ing advanced n-type thermoelectric material in the temperature
range of 500–800 KŒ1�. Compared with other materials with a
figure of merit, ZT> 1,Mg2Si possesses many outstanding ad-
vantages, including the abundance of its constituent elements
in nature, the non-toxicity of its processing by-products, and
its environmentally benign impactŒ2�. However, the thermal
conductivity of Mg2Si-based alloys is relatively high for ther-
moelectric applications, about 6–8 W/(m�K)Œ3�. Convention-
ally, heavy doping and solid solutions are regarded as common
methods to improve the thermoelectric properties of Mg2Si,
such as the doping of Sb, Te, Bi to Mg2Si, Mg–Si–Sn and
Mg–Si–Ge systemsŒ2; 4�10�. Efforts aimed at improving the
thermoelectric properties of certain materials have recently fo-
cused on the addition of rare earth elements (Re)Œ11�16�. This
has been attributed to the role of the complex electronic shell
and sharp energy level splittingŒ17; 18�. Because of their elec-
tronegative similarity to and same crystal structure as magne-
sium, Sc and Y were investigated as dopants for Mg2Si.

Field-activated and pressure-assisted synthesis (FAPAS)
has been successfully applied in the preparation of thermo-
electric materials in our previous studiesŒ19�21�. In the case of
Mg2Si, the FAPAS process contributes in two ways: (a) short-
ens the time of the solid-state reaction process betweenMg and
Si; and (b) depresses the temperature of the solid-state reaction,
thus suppressing the volatilization of MgŒ22; 23�.

2. Experiment

The raw materials were powders of Mg (99.95%, 80–120
mesh), Si (99.95%, 200 mesh) and Re (Sc and Y: 99.99%, 200
mesh). All powders were obtained from the Johnson Matthey
Co. Sc and Y were doped to Mg2Si at different levels, and the
compositions and signs are listed in Table 1.

Mixtures of elemental powders corresponding to the chem-
ical constitution of Re-doped Mg2Si were co-milled at 230
r/min in a planetary mill (Fritsch, Model G5, Germany) for
5 h. Milling resulted in grain size refinement and the creation
of three-dimensional multi-interfaces between the magnesium,
silicon, and Re particles. The size of the milled powders was
below 0.1 �m, as evaluated by Williamson–Hall analysis. In
all cases, 5 wt% excess Mg was added to compensate for loss
during the sintering process.

The milled powders were cold-compacted into cylindri-
cal blocks in a graphite die, 20 mm in diameter and 2 mm in
thickness, and the relative density is in the range of 70%–75%.
These samples were then placed in the FAPAS apparatus
(Fig. 1) and sintered in the temperature range of 1023–1073
K and under a uniaxial pressure of 50 MPa for 15 min. Then
power was turned off and the samples were allowed to cool
down to room temperature using recycled water.

Phase and microstructure were characterized by using

Table 1. Compositions and signs of Re-doped Mg2Si.

Content of Re
Sc (ppm) Y (ppm)

1000 2500 1000 2000
Sign A-1 A-2 B-1 B-2
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Fig. 1. Schematic diagram of the FAPAS apparatus. Fig. 2. XRD patterns of sintered samples.

Fig. 3. Microstructure of Mg2Si and B-2. (a, b) OM structure. (c, d) SEM structure.

a X-ray diffractometer (XRD, Model D5000, Siements AG,
Karlsruhe), a scanning electron microscope (SEM, Philips
FEIXL30-SFEG) and an optical microscope (OM, Olympus-
GX71). The Seebeck coefficient and the electrical conductiv-
ity were simultaneously determined by using a Seebeck coef-
ficient/electric resistance measuring system (ZEM-1, ULVAC
Inc., Japan). A temperature difference of about 2–5 K between
the cool and hot ends of the sample was used for the electromo-
tive force (V / measurement, Seebeck coefficient (˛ D V /�T )
can be obtained. The thermal conductivity (�) was calculated
from � D ˛DCp, where a is the thermal diffusivity measured
with a laser flash apparatus (Netsch, LFA457), D is the sample
density measured by a gravimetric method, and Cp is the spe-
cific heat capacity measured on a thermal analyzer (Netsch,
DSC404).

3. Results and discussion

3.1. Phases and microstructures

Figure 2 depicts the XRD patterns of sintered Sc and Y
dopedMg2Si samples by the PAPAS process. There are mainly
Mg2Si peaks, showing that the formation of Mg2Si took place
during the sintering process. As Mg, Y, and Sc have the same
hexagonal crystal structure, Y and Sc are inclined to replace
Mg in the CaF2 type structure, the micro-content of earth ele-
ments did not change the crystal structure. The relative density
of the sintered samples is in the range of 95%–97% by using
the Archimedes method at room temperature.

The fracture microstructures of Mg2Si and B-2 measured
by using an OM and an SEM are shown in Fig. 3. The samples
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Fig. 4. The electric conductivity of Re-doped Mg2Si.

prepared by this method have uniform and relatively fine-grain
size microstructures. The average grain size was about 1.5–2
�m, and both of the samples consist of small parallel and thin
slices, which can enhance lattice scattering to reduce thermal
conductivity and ensure good thermoelectric performance.

3.2. Thermoelectric properties of Re-Mg2Si samples

3.2.1. Electrical properties

The temperature dependence of the conductivity (� ) of Re-
doped Mg2Si is delineated in Fig. 4. The electric conductivity
of Sc doped samples had a similar trend to Mg2Si. While the
electric conductivity of the sample dopedwith Y revealed a dis-
tinct characteristic, taking B-2 as an example, its electric con-
ductivity increased from 2.61 � 104 to 3.74 � 104 S/m in the
range of 288 to 378 K, which can be attributed to an increase
in carrier concentration due to the introduction of Y, then it
decreased to 0.98 � 104 S/m with increasing temperature to
700 K, the decrease in � is believed to be the consequence of
a decreasing mobility with increasing temperatureŒ24�. With a
further increase in temperature, the electric conductivity of all
samples trended to slightly increase, which contributed to the
intrinsic conduction of Mg2Si with a band gap of 0.77 eVŒ25�.
The adsorption to outer-shell electron of Sc is stronger than that
of Y, so the effect on � in most temperature was smaller than
Y.

The temperature dependences of the Seebeck coefficient
(˛) of Re doped Mg2Si are shown in Fig. 5. The signs of the
Seebeck coefficients are negative, confirming that n-type con-
duction is dominant in these materialsŒ26�. The Seebeck coef-
ficient of the samples had a similar relationship with tempera-
ture. It first increased with temperature to a maximum absolute
value, which can be attributed to the increase of effective car-
rier qualityŒ27�. Then the Seebeck coefficient decreased with a
further increase in temperature, because the increasing of the
carrier concentration plays a main roleŒ27�. It was indicated that
sample A-2 got the best Seebeck coefficient at lower temper-
ature and had been enhanced obviously, about 1.93 times of
that belonging to non-doped Mg2Si at about 408 K. It was also

Fig. 5. Seebeck coefficient of Re-doped Mg2Si.

Fig. 6. The thermal conductivity of Re-doped Mg2Si.

inferred that the Seebeck coefficient can be enhanced to some
degree when the doping ratio is increased, resulting from the
rising of the diffusion barrier by doping.

Comprehensive electrical performance can be expressed
as P D ˛2� ; by comparing, we knew that sample A-2 got a
better electrical property.

3.2.2. Thermal conductivity

The thermal conductivity of samples showed the
same trends with temperature in Fig. 6, they decreased
monotonously in the measured temperature range, and de-
creased with more addition of Re due to the lattice distortion. It
was revealed the thermal conductivity of A-2 and B-2 reduced
to 70% and 84% of that belonged to the undoped Mg2Si.

3.2.3. Figure of merit

The thermoelectric figure of merits (ZT D ˛2� /k) for all
samples were calculated. From the thermal and electrical per-
formances, among detected samples, A-2 and B-2 were bound

113004-3



J. Semicond. 2012, 33(11) Wang Liqi et al.

Fig. 7. Figure of merit of Re-doped Mg2Si.

to have a higher ZT than the non-doped Mg2Si, as displayed
in Fig. 7, which were 3.29 and 2.28 times of the latter at 408 K
and 468 K, respectively. The ZTmax of A-2 and B-2 were 0.42
at 498 K and 0.40 at 528 K, higher than 0.25 of non-doped
Mg2Si at 678 K. So, it was demonstrated that micro-scale Re
Sc and Y could both enhance the thermoelectric properties of
Mg2Si, and Sc seemed to do the best at lower temperature.

4. Conclusion

Re-doped Mg2Si thermoelectric materials (Sc: 1000, 2500
ppm and Y: 1000, 2000 ppm) were fabricated by FAPAS pro-
cess, at 1023–1073 K, 50 MPa for 15 min. The XRD pattern
of the samples indicated that the reaction of powders had taken
place thoroughly. SEM and OM images showed that samples
had uniform and relatively fine-grainmicrostructures; the aver-
age grain size was about 1.5–2�m. The sample with 2500 ppm
Sc got the best absolute value of Seebeck coefficient, about
1.93 times of that belonging to non-doped Mg2Si at about 408
K. The electric conductivity of the sample doped with 2000
ppmY became 1.69 times of that of pureMg2Si at 468K, while
the comprehensive electrical performance of the sample with
2500 ppm Sc was better. The thermo-conductivity of samples
doped with Sc and Y reduced apparently compared with that of
the pureMg2Si, which was only 70% and 84% of that belonged
to the latter, proving that the addition of Sc and Y can improve
both thermal and electrical properties of Mg2Si based thermo-
electric materials. The ZT of 2500 ppm Sc and 2000 ppm Y
doping samples were 3.29 times and 2.28 times of non-doped
Mg2Si at 408 K and 468 K, respectively. The maximum ZT
among the obtained samples belonged to the sample with 2500
ppm Sc was 0.42. It seemed that samples doped with Sc had
the best thermoelectric performances at lower temperature. In
short, it was confirmed Sc and Y were promising dopants in a
Mg2Si system.
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