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An empirical formula for yield estimation from singly truncated performance data
of qualified semiconductor devices
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Abstract: The problem of yield estimation merely from performance test data of qualified semiconductor devices
is studied. An empirical formula is presented to calculate the yield directly by the sample mean and standard de-
viation of singly truncated normal samples based on the theoretical relation between process capability indices
and the yield. Firstly, we compare four commonly used normality tests under different conditions, and simulation
results show that the Shapiro–Wilk test is the most powerful test in recognizing singly truncated normal samples.
Secondly, the maximum likelihood estimation method and the empirical formula are compared by Monte Carlo
simulation. The results show that the simple empirical formulas can achieve almost the same accuracy as the max-
imum likelihood estimation method but with a much lower amount of calculations when estimating yield from
singly truncated normal samples. In addition, the empirical formula can also be used for doubly truncated normal
samples when some specific conditions are met. Practical examples of yield estimation from academic and IC test
data are given to verify the effectiveness of the proposed method.
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1. Introduction

In the microelectronics manufacturing industry, the sup-
plier usually only ships qualified semiconductor devices to the
customer after weeding out unqualified devices according to
the customer’s specification. How to calculate the yield of the
products solely from the performance data of the qualified ones
is an important issue to be resolved during quality estimation
of semiconductor devices. Typically, if the concerned perfor-
mance data of all produced devices follow the normal distri-
bution, the data of the qualified devices will then follow the
truncated normal distributionŒ1�3�. Traditional yield estima-
tion methods suitable for normally distributed performances
may bring about big mistakes when dealing with truncated test
dataŒ1�3�. As a result, to estimate the yield correctly, one should
first check if the original normally distributed sample is trun-
cated aided by normality tests, and then choose the appropriate
estimation method.

In this paper, we mainly discuss the yield estimation from
sample data of qualified products for normally distributed per-
formances with one-sided specification limits. An empirical
formula is presented to calculate the yield conveniently ac-
cording to the theoretical relation between process capabil-
ity indices (PCI) and the yield of the singly truncated normal
distribution. Some basic definitions and the maximum likeli-
hood estimation (MLE) method of the truncated normal dis-
tribution are briefly reviewed. Four normality tests are com-
pared via Monte Carlo simulation under different conditions
to find which test has the biggest power in detecting trunca-
tion of the normal samples. The empirical formula is found and
compared with the MLE method. Simulation results show that
these twomethods have very close accuracy in yield estimation

from singly truncated normal samples and some special doubly
truncated normal samples. Three practical examples are given
to verify the simulation results.

2. Truncated normal distribution and parameter
estimation methods

2.1. Truncated normal distribution

Suppose product performance data follow a normal distri-
bution N.�; �2/ with unknown mean and variance, a random
sample x1, x2, � � � , xn was initially generated from this nor-
mal distribution, but all observations less than xL and (or) big-
ger than xU have been discarded, so that xL < xi < xU; i D

1; 2; � � � ; n. xL and xU are truncation points corresponding to
the specification limits, which are known a priori. Then the
performance data X of the qualified products follow a trun-
cated normal distributionNTR.�; �2/ in essence. The probabil-
ity density function of a doubly truncated normal distribution
NTR;d.�; �2/ is defined asŒ4�

fTR;d.x/ D

8̂̂̂̂
<̂
ˆ̂̂:

�
�x � �

�

�
˚
�xU � �

�

�
� ˚

�xL � �

�

� ; xL < x < xU;

0; otherwise;
(1)

where �.�/ and ˚.�/ are the probability density function (PDF)
and cumulative distribution function (CDF) of the standard
normal distribution, respectively. As for the singly truncated
normal distribution, NTR;s.�; �2/, the PDF is obtained by sub-
stituting 1 for xU or – 1 for xL in Eq. (1). Figure 1 shows the
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Fig. 1. Yield values of normally distributed performancewith different
truncation points.

normal PDF curve when the performance follows N.0; 1/ with
different values of xL and the corresponding yield values. Ap-
parently NTR.�; �2/ is defined based on N.�; �2/, and they
share the same parameters, � and � , in their respective PDFs.

2.2. Parameter estimation methods

In order to calculate the yield Y D ˚..xU � �/=�/ �

˚..xL � �/=�/, one needs to estimate the unknown mean �

and standard deviation � of N.�; �2/ from the truncated nor-
mal sample x1; x2; � � � ; xn. Since the normality assumption
does not hold for the sample, � and � certainly cannot be esti-
mated using the sample mean Nx D

Pn
i D 1 xi =n and the sam-

ple standard deviation s D Œ.n�1/�1
Pn

i D 1 .xi � Nx/2�1=2 di-
rectly. In fact, Nx and s are the moment estimators of the mean
�TR and standard deviation �TR of NTR.�; �2/ that the sample
actually follows.

In practice, people frequently use the MLE method to
estimate the unknown parameters via the statistical proper-
ties of NTR.�; �2/Œ4�6�. Given a doubly truncated normal
sample x1; x2; � � � ; xn for example, the likelihood function is
L.�; �/ D

Qn
i D 1 fTR;d.xi I �; �/, and the log-likelihood is

� lnL.�; �/ D n ln
h
˚
�xU � �

�

�
� ˚

�xL � �

�

�i
C n ln.

p
2��/ C

Xn

i D 1

.xi � �/2

2�2
: (2)

The gradient (denoted as G/ of Eq. (2) with respect to �

and � is given in Refs. [4, 6]. Since G contains the integra-
tion of unknown parameters, there is no closed-form solution
to the equation G D 0. Thus the parameters’ maximum like-
lihood estimators O� and O� can not be easily obtained through
elementary calculation. Commonly, they are obtained by min-
imizing the log-likelihood function using iterative algorithms
such as the Newton–Raphson methodŒ6�.

The �2 method was proposed to estimate the parameters
for doubly or singly truncated distributions by minimizing
the classic statistic �2 D

Pk
i D 1 .vi � npi /

2
ı

npi
Œ7�. vi is

the number of data points falling into the interval [ai , ai C 1]
when the truncated data are grouped properly, and pi .�; �/ DR aiC1

ai
fTR.�; �/. Since this method is based on the theorem of

large numbers, it is only valid for very large sample sizeŒ7�.
Besides the above methods, the method of moments es-

timation can also be used in estimating the distribution para-
metersŒ8; 9�. However, it has been verified that even under large
sample sizes, the moment estimators will cause large biasesŒ6�.

3. Power comparison of different normality tests
in recognizing singly truncated normal sam-
ples

As mentioned before, it is a fundamental step to check
whether the normal sample is truncated or not before proceed-
ing with any relevant yield estimation procedures. This can be
fulfilled by drawing the histogram or by using a more formal
method such as normality tests. In normality tests, the null and
alternative hypotheses are chosen as: H0: X � N.�; �2/; H1:
X ¦ N.�; �2/. The power of a test is the probability of reject-
ing the null hypothesis of normality when it is actually false,
and it varies with the significance level, sample size and al-
ternative distributions. Although various normality tests were
compared under different settings in Refs. [10, 11], there are
still no power comparisons available for the case when the al-
ternative distributions are specified to be truncated normal dis-
tributions.

Here the alternative distributions chosen are NTR;s.0; 1/

with three different truncation points xL D 0, –1 and –2. Four
commonly used normality tests are under study, including the
chi-squared (�2/ test, the Kolmogorov–Smirnov (KS) test, the
Anderson–Darling (AD) test and the Shapiro–Wilk (SW) test.
Most of them have been applied in identifying truncated sam-
ples in Refs. [3, 5, 7]. In this study, the SW test adopts the AS
R94 algorithm proposed by RoystonŒ12�, which can be used for
sample sizes between 3 and 5000. The details of the algorithm
and other normality tests can be found in the relevant litera-
turesŒ3; 5; 7; 10�12�. Two level of significance, ˛ D 5% and ˛

D 10%, and four sample sizes n D 50, 100, 200 and 500 are
considered. During our Monte Carlo simulation, for each sam-
ple size n, N D 200 samples are generated repeatedly from
each alternative distribution. Then the power of each test is the
proportion of samples with which the test rejects the null hy-
pothesis of normality.

The power comparison results are listed in Table 1. The
yield values corresponding to different xL are also given, which
may serve as an indicator of the degree of truncation. It is clear
that the power of each test increases with n, ˛, and the de-
gree of truncation. When the sample is heavily truncated (low
yield), most tests gain fairly high power even under a rela-
tively small sample size, except for the �2 test. When the sam-
ple is lightly truncated (high yield), only the SW test is ad-
equate to achieve high power when n D 500. Overall, gener-
ally for singly truncated normal distributions, the SW test is the
most powerful test. However, it is still very difficult even for
the SW test to achieve high power in recognizing very lightly
truncated normal samples, for example, in recognizing samples
from NTR;s.0; 1/ when xL D �3 (Y D 99.87%), n D 5000, and
˛ D 10%, the power of the SW test is only 0.675.
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Table 1. Comparison of power for different normality tests against singly truncated normal distributions.
xL (yield) 0 (50.00%) –1 (84.13%) –2 (97.72%)
˛ level 0.05 0.05 0.1 0.1 0.05 0.05 0.1 0.1 0.05 0.05 0.1 0.1
Sample size 50 100 50 100 100 200 100 200 200 500 200 500
Methods �2 0.19 0.46 0.29 0.61 0.17 0.36 0.29 0.48 0.12 0.11 0.17 0.21

KS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.04 0.07 0.08 0.11
AD 0.80 0.99 0.88 1.00 0.64 0.99 0.77 1.00 0.17 0.35 0.24 0.55
SW 0.93 1.00 0.97 1.00 0.88 1.00 0.95 1.00 0.30 0.93 0.50 0.97

4. The empirical formula for yield estimation

When the performance data is judged to be truncated, one
can use the MLE method to estimate the parameters of the dis-
tribution and then calculate the yield of the devices. However,
due to the adoption of iterative algorithms in MLE, the yield
cannot be calculated as easily as in the normal distribution case.
In this section, a very simple to use empirical formula is pro-
posed to calculate the yield from singly truncated normal sam-
ples, and it is also suitable for doubly truncated normal samples
when some specific conditions are met. This formula is based
on the theoretical relation between the PCI and the yield of the
singly truncated normal distribution. The accuracies of the two
yield estimationmethods are then compared on byMonte Carlo
simulation.

4.1. Relation between PCI and yield

Process capability indices have been widely used in the
microelectronics manufacturing industry to measure the qual-
ity of products and processes. For performances following the
normal distributionN.�; �2/with one-sided specification lim-
its, xL or xU, the capability indices are defined as CPL D

.� � xL/=3� and CPU D .xU � �/=3� . The relation between
the yield and CPL or CPU can be expressed asŒ13�

Y D P.X > xL/ D ˚.3CPL/; (3)

Y D P.X < xU/ D ˚.3CPU/: (4)

Similarly, for performance data of qualified products fol-
lowing the singly truncated normal distribution NTR;s.�; �2/,
we can define the PCI CPL;TR D .�TR � xL/=3�TR and
CPU;TR D .xU � �TR/=3�TR. Then the yield also can be ex-
pressed as the function of CPL;TR or CPU;TR because �TR and
�TR are the functions of � and � . Taking the lower truncated
distribution as an example, the mean and standard deviation
of the two distributions N.�; �2/ and NTR;s.�; �2/ have the
following relationŒ14�

�TR D � C
�

1 � ˚.x0
L/

�.x0
L/; (5)

�TR D �

�
1 �

�.x0
L/f�.x0

L/ � x0
LŒ1 � ˚.x0

L/�g

Œ1 � ˚.x0
L/�2

�1=2

; (6)

where x0
L D .xL � �/=� is the standardized value of xL.

The curve of CPL versus the reject rate 1 – Y for N.0; 1/

and the curve of CPL;TR versus 1 – Y for NTR;s.0; 1/ are drawn
in Fig. 2 sharing the same x axis when xL changes from 0 to
–3 according to Eqs. (3)–(6). Obviously the curve of CPL;TR

Fig. 2. The relation of 1 – Y with CPL and CPL;TR.

versus 1 – Y (in logarithmic coordinates) is very close to a
straight line. In order to calculate the yield via CPL;TR from
singly truncated normal samples, we can fit a linear equation
to this curve as

log10.1 � Y / D 1:76 � 4:71CPL;TR: (7)

Since recognizing very lightly truncated normal samples is
difficult, it is more meaningful for us to accurately estimate the
yield values when the yield is not too high. Therefore, in fitting
the above linear equation, we use the curve data with xL rang-
ing from 0 to –2 (Y D 50%–97.72%). As will be seen in the
next section, fitting an equation of higher degree with a wider
range of curve data will not apparently improve the estimation
accuracy. Likewise, the equation above is also valid for 1 – Y

and CPU;TR. Overall, the empirical formulas for yield estima-
tion from singly truncated normal samples x1; x2; � � � ; xn can
be expressed as following

OY D 1 � 101:76 � 4:71
Nx � xL

3s ; (8)

OY D 1 � 101:76 � 4:71
xU � Nx

3s ; (9)
where Nx and s are used as the estimators of �TR and �TR, re-
spectively. Unlike the MLE method, the yield is calculated di-
rectly by Nx and s using the empirical formula and the procedure
is quite straightforward. To the best of our knowledge, it is the
first time that this method has been proposed.

4.2. Accuracy comparison of different yield estimation
methods

In this section, the accuracy of the proposed empirical for-
mula is compared with the MLEmethod byMonte Carlo simu-
lation. To reflect the influence of different fitting methods on
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Table 2. Relative errors of the yield estimation with singly truncated normal samples under various cases (unit: %).
xL (yield) 0 (50.00%) –1 (84.13%) –2 (97.72%)
Sample size 100 500 1000 100 500 1000 100 500 1000
Methods MLE 33.75 17.00 11.56 8.23 3.62 2.39 1.34 0.57 0.37

Eq. (8) 32.15 15.71 10.79 8.28 3.72 2.51 1.45 0.59 0.40
Eq. (10) 33.54 16.23 10.99 8.28 3.68 2.46 1.45 0.58 0.38

Table 3. Relative errors of the yield estimation with doubly truncated normal samples under various cases (xU D 3, unit: %).
xL (yield) 0 (49.87%) –1 (84.00%) –2 (97.59%)
Sample size 100 500 1000 100 500 1000 100 500 1000
Methods MLE 37.17 18.58 13.24 9.71 3.91 2.80 1.55 0.62 0.48

Eq. (8) 33.87 17.46 14.32 8.27 3.53 2.58 1.40 0.64 0.54

the accuracy, a slightly more complicated empirical formula is
generated and also compared with the other two methods. A
quadratic equation is fitted to the curve data with xL ranging
from 0 to –3 and the new empirical formula is

OY D 1 � 101:96 � 5:45
Nx � xL

3s C 0:68.
Nx � xL

3s /2

: (10)

The singly truncated normal distribution NTR;s.0; 1/ with
three different truncation points xL D 0, –1, –2 and three sam-
ple sizes n D 100, 500, 1000 are under consideration. Just like
the procedures described in Section 3, the truncated samples
are generated repeatedly for N D 200 times for each combina-
tion of xL and n, and the accuracies of different methods can be
measured by the N yield estimates OYi , i D 1; 2; � � � ; N: In this
paper, the relative error between OY and Y is used to measure
the accuracies of different yield estimation methods, which is
defined as

rmse.Y / D

vuut 1

N

NX
iD1

 
OYi � Y

Y

!2

� 100%: (11)

The relative errors are given in Table 2 under various cases.
Clearly the accuracy of eachmethod is improvedwhen increas-
ing the sample size and decreasing the degree of truncation,
and there is no significant difference of accuracy between the
three methods. As a result, the simple empirical formulas in
Eqs. (8) and (9) can meet the accuracy requirement of yield
estimation with the least amount calculation. Besides, in Fig.
2, the curve of CPL;TR versus 1 – Y is almost coincident with
the curve of CPL versus 1 – Y when the yield is sufficiently
high (the sample is truncated very lightly), which means that
we can then use CPL to calculate the yield from x1; x2; � � � ; xn

according to Eq. (3).When the sample is very lightly truncated,
NTR;s.�; �2/ resembles N.�; �2/, CPL;TR � CPL, Nx and s can
be used to estimate� and � approximately. For example, when
estimating the yield forNTR;s.0; 1/with xL D �3 and n D 100,
rmse(Y / by using the following traditional method is 0.098%
and rmse(Y / by using Eq. (8) is 0.097%.

OY D ˚

�
Nx � xL

s

�
: (12)

In summary, for moderately truncated normal samples
which can be recognized easily, Eqs. (8) and (9) are preferred;
for very lightly truncated normal samples which can not be rec-
ognized easily, using the traditional method like in Eq. (12) will

not produce big errors. In addition, to achieve satisfactory ac-
curacy when dealing with heavily truncated data, the sample
size should not be too small.

4.3. Application of the empirical formula for doubly trun-
cated normal samples

IfN.�; �2/ is moderately truncated from one side and very
lightly truncated from the other side, then the characteristics of
NTR;d.�; �2/ are similar to those of NTR;s.�; �2/. For exam-
ple, in Fig. 1, xU is far from � D 0, and then Y D P.X <

xU/ � P.X < xL/ � 1 � P.X < xL/ D P.X > xL/. There-
fore, the empirical formulas can also be used to estimate the
yield from doubly truncated normal samples of that kind. The
accuracies of the empirical formula (8) and the MLE method
are compared for NTR; d.0; 1/ under various conditions with a
fixed upper truncation point xU D 3. From Table 3, there is no
significant difference between the two methods and the accu-
racies are close to the singly truncated case.

5. Practical application

5.1. Singly truncated case

5.1.1. Using the data in Ref. [5]

In this section, the singly truncated normal sample of
Ref. [5] is adopted to compare different methods, although the
sample is not used for yield estimation purpose. We define the
probability Y D P.X > xL/ for the sample where xL is known
to be 277.5. The data are listed in Table 4, and the histogram
is also given in Fig. 3 from which the truncation is distinguish-
able. However, the SW test fails to recognize this singly trun-
cated normal sample with ˛ D 10% because the power is low
for the sample size (n D 102) and the degree of truncation (Y
D 95%). According to Ref. [5], the MLE estimators of � and
� are 279.24 and 1.057, respectively, and then the yield esti-
mated byMLEmethod is 95.01%. Using the empirical formula
in Eq. (8), the yield is then 94.98%. Therefore the two meth-
ods perform equally well. If we use Nx and s to estimate � and
� directly, as in the traditional method, the yield turns out to be
97.43% by using Eq. (12). In fact, the calculated PCI is OCPL;TR

not OCPL by using Nx and s directly. According to Fig. 2, the yield
calculated by CPL is always bigger than by the same value of
CPL;TR, which can explain the calculation results.
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Table 4. Singly truncated normal data in Ref. [5].
281.821 279.445 278.642 281.165 280.098 280.521 279.093 281.046 279.967 280.890 279.174 281.401
281.974 280.257 279.862 280.387 278.790 279.728 279.569 279.967 278.678 279.624 279.834 279.223
280.319 279.274 279.383 279.543 279.834 279.675 278.821 279.409 280.884 278.155 277.664 280.419
280.207 279.333 278.006 279.285 279.862 278.481 280.728 280.178 278.852 279.702 278.547 279.862
279.731 279.702 279.254 279.384 278.953 279.445 278.139 280.098 280.649 279.970 279.624 279.333
279.414 280.521 278.517 278.251 277.546 279.333 280.151 279.223 279.463 279.143 278.901 279.754
278.221 279.494 277.828 279.383 278.284 277.892 278.926 280.413 277.710 277.701 278.771 277.874
278.965 278.528 279.046 279.675 277.892 277.946 279.705 278.958 278.981 278.738 280.239 280.623
279.304 277.781 278.938 277.505 278.575 279.282

Fig. 3. Histogram of 102 singly truncated normal data.

Fig. 4. Schematic of the Sallen and Key filter.

5.1.2. Yield estimation for the Sallen and Key filterŒ15�

In this section, different methods are compared by yield
estimation of the second-order low-pass Sallen and Key active
filter, as shown in Fig. 4Œ15�. The attenuation of the filter can
be expressed mathematically as

A.f / D 20 log10

�ˇ̌
1 � R1R2C1C2.2�f /2

Cj 2�f .R2C2 C R1C2/j��1 ; .in dB/: (13)

According to Ref. [15], the values of passive parts are nor-
mally distributed with standard deviations equal to 3.33% of
the nominal values for the resistors and 1.67% for the capac-
itors. It can be easily verified that the attenuation when f D

5 kHz obeys the normal distribution using the nominal values
of Fig. 4. The histogram of 5000 performance data obtained
by Monte Carlo circuit simulations is shown in Fig. 5 and the
numbers of data points falling into consecutive data intervals

Fig. 5. Histogram of 5000 simulated performance data of the filter.

Fig. 6. Histogram of 120 voltage test data of qualified devices.

are also given. n is the truncated sample size after weeding out
data bigger than xU and the yield can then be calculated accu-
rately by Y D P.x < xU/ � n=5000when xU taking different
values as in Table 5. Since sample sizes are relatively large, all
the truncated samples can be recognized by the SW test, and the
�2 method is workable. Clearly, the traditional method over-
estimates the yield when it is actually low, and the �2 method
performs unsatisfactorily as well. While the empirical formula
and MLE method give accurate yield estimates under different
cases.
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Table 5. Estimated yield by different methods when xU taking different values.

xU (dB) n yield � n/5000 Traditional method �2 method MLE method Empirical formula
�26.5 4992 99.84% 99.80% 99.76% 99.74% 99.77%
�27 4792 95.84% 97.58% 96.47% 95.42% 95.43%
�27.5 3638 72.76% 93.13% 79.04% 73.46% 73.26%
�28 1603 32.06% 89.12% 60.15% 29.87% 33.24%

Table 6. Voltage test values of qualified devices (V).
0.91765 0.92588 0.92571 0.91887 0.92313 0.92258 0.92997 0.92089 0.91830 0.91910 0.92491 0.92340
0.91725 0.92184 0.92824 0.91653 0.92170 0.92092 0.92609 0.91729 0.92419 0.91867 0.92132 0.92003
0.91866 0.92197 0.91986 0.92212 0.92250 0.92491 0.91690 0.92059 0.92101 0.92304 0.91825 0.91655
0.92618 0.91887 0.92106 0.92286 0.91787 0.92023 0.91844 0.92417 0.92513 0.92329 0.91876 0.92403
0.91668 0.92103 0.91885 0.92096 0.92165 0.91619 0.91891 0.91989 0.91905 0.91726 0.91999 0.91933
0.92020 0.92234 0.92215 0.92001 0.92155 0.92041 0.92293 0.92039 0.91773 0.91939 0.91928 0.92033
0.92108 0.92398 0.92010 0.92004 0.92240 0.91871 0.92236 0.92560 0.91667 0.91876 0.92085 0.92139
0.92776 0.92138 0.91953 0.92191 0.92620 0.92413 0.92217 0.92371 0.91903 0.91733 0.92626 0.91999
0.92185 0.92038 0.92260 0.91990 0.91925 0.92388 0.92178 0.92543 0.92188 0.92299 0.91682 0.91695
0.91663 0.91816 0.91886 0.92126 0.92230 0.92387 0.92105 0.91778 0.91814 0.92132 0.92002 0.91896

Table 7. Advantages and disadvantages of different methods in yield estimation from singly truncated normal samples.
Methods Advantages Disadvantages
Traditional method Simple calculation Overestimate the yield especially for low yield values
MLE method High accuracy Calculation is complex due to iterative algorithms
�2 method — Complicated calculation, need very large sample sizes
Moments method Simple calculation Low accuracy, cause big biases
Empirical formula Simple calculation, high accuracy —

5.2. Doubly truncated case

The specification for the feedback voltage of a monolithic
DC/DC converter is [0.916 V, 0.945 V]. From 2166 test data,
this voltage parameter is known to follow the normal distribu-
tion N.0:9204; 0:00332/, and then the theoretical value of the
yield is 90.88%.

After weeding out unqualified devices according to the
specification, 120 performance data are sampled from qualified
devices listed in Table 6. Both the SW test and the histogram in
Fig. 6 indicate the truncation of the sample. Clearly, the influ-
ence of xU on the yield is negligible. The yield calculated from
this truncated sample byMLE, the empirical formula in Eq. (8),
and the traditional method in Eq. (12) are 91.28%, 90.75%, and
96.24%, respectively. Obviously, the traditional method over-
estimates the yield. Therefore the proposed empirical formula
and the MLE method give relatively accurate quality estima-
tions for the voltage parameter.

Finally, the advantages and disadvantages of different
methods are summarized in Table 7. Obviously, the proposed
empirical formula is an attractivemethod in dealing with singly
truncated normal samples when the samples can be recognized
by using the SW test. Meanwhile the accuracies of different
methods are closely related to the sample sizes especially when
estimating low yield values. Tables of the relative errors in Sec-
tion 4 and the powers of the SW test in Section 3 under various
conditions can be useful when choosing suitable sample sizes.

6. Conclusion

In this paper, a very easy to use empirical formula is pre-
sented to calculate the yield from singly truncated normal per-
formance data of qualified semiconductor devices based on
the theoretical relation between process capability indices and
yield. Four normality tests are compared under different condi-
tions, with the Shapiro–Wilk test achieving the highest power
in recognizing singly truncated normal samples. Simulation re-
sults show that MLE method and the empirical formula have
very close accuracy in yield estimation from singly truncated
normal samples and some special doubly truncated normal
samples. However, the empirical formula is much more easier
to use since the yield is calculated directly by Nx and s. Tables of
the relative errors under various cases can be helpful for people
when choosing the sample size.
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