CHINESE JOURNAL OF SEM ICONDUCTORS

原位确定 GaAsM ESFET 沟道的 掺杂浓度分布和迁移率分布

张友渝

程兆年 张俊岳

(河北半导体研究所 石家庄 050051)

(中国科学院上海冶金研究所 上海 200050)

摘要 本文提出一种原位测定 GaA sM ESFET 沟道中掺杂浓度分布和迁移率分布的新方法 建立了测试模型 推导出测量计算公式 用最优化方法处理实验数据, 由机助测试系统和计算程序可方便地获得结果

EEACC: 2560S

1 引言

砷化镓肖特基势垒场效应晶体管 (GaA s M ESFET) 沟道的掺杂浓度分布 N(x) 和迁移率分布 $\mu(x)$ 是影响器件微波特性的重要参数 为提高 GaA s M ESFET 的微波性能 器件的栅长已缩短到亚微米量级,而且通常采用挖槽的非均匀掺杂沟道,这给测报 GaA s M ESFET 沟道掺杂浓度分布 N(x) 和迁移率分布 $\mu(x)$ 带来一定的难度 本文提出了原位测定 GaA s M ESFET 沟道掺杂浓度分布及迁移率分布原理,建立了测试模型,推导出测量计算公式 测定迁移率分布 $\mu(x)$ 的原理,是基于半导体的几何磁阻效应 沟道的掺杂浓度分布 N(x),则是从 GaA s M ESFET 本征沟道电阻 $R_i(V_g)$ - V_g 之间的关系求得 根据在有磁场和无磁场条件下, GaA S M ESFET 线性区源漏间电阻 $R_i(V_g)$ - $N(V_g)$ 和 $R_i(V_g)$ - $N(V_g)$ 和 $R_i(V_g)$ - $N(V_g)$ 之间的关系,用最优化方法,分离出本征沟道电阻 $R_i(V_g)$ - $N(V_g)$ 和 $N(V_g)$ - $N(V_g)$

2 测试原理

根据均匀掺杂沟道的 GaA sM ESFET 理论, Horwer 和Bechtel^[1]引入了参变量 $\eta(V_g)$, GaA sM ESFET 线性区源漏之间电阻 $R_{ds}(V_g)$ 可表达为 $\eta(V_g)$ 的线性函数

$$R_{ds}(V_g) = R_s + R_d + R_{ch} \eta(V_g)$$
 (1)

其中

$$R_{\rm ch} = \frac{L_{\rm g}}{N_{\rm W} q \mu a} \tag{2}$$

$$\eta(V_g) = \frac{1}{1 - \sqrt{\frac{V_b - V_g}{V_b - V_p}}}$$
(3)

在均匀掺杂沟道情况下:

$$\eta_{(V_g)} = \frac{1}{1 - \frac{h(V_g)}{a}} \tag{4}$$

$$V_{b} - V_{p} = \frac{N q a^{2}}{2\epsilon\epsilon_{0}}$$
 (5)

式中 Rs和Ra分别为GaAsMESFET的源和漏电阻; Reb为肖特基势垒耗尽层厚度为零时

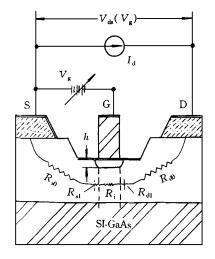


图 1 GaA s M ESFET 测试模型

栅下沟道电阻; V_s 为外加栅电压; L_s 为栅长; N 为沟道掺杂的浓度; w 为栅宽; q 为电子电荷; μ 为电子迁移率; a 为沟道厚度; $h(V_s)$ 为肖特基势垒耗尽层厚度(如图 1 所示); $\eta(V_s)$ 为一无量纲量, 在均匀掺杂沟道情况下, 其物理意义是沟道厚度 a 与栅压为 V_s 时导电沟道厚度(a- $h(V_s)$) 的比值; V_s 为栅肖特基势垒内建电势; V_p 为夹断电压; ϵ 为 GaAsth M 材料的相对介电常数: G 为真空介电常数

对于均匀掺杂沟道器件, 引入参变量 $\eta(V_g)$ 后, GaA sM ESFET 线性区本征沟道电阻 $R_i(V_g)$ 可以表达为:

$$R_{i}(V_{g}) = R_{ch} \eta(V_{g}) \tag{6}$$

Fu ju i^[2]根据 $R_{ds}(V_g)$ - $\eta(V_g)$ 图, 由直线的斜率来确定 R_{ds} 的值, 将直线外推到与纵坐标 ($\eta(V_g)$ =

0) 相交, 直线与纵坐标的截距求得 R_s+R_a 的值 根据均匀掺杂沟道的 GaA s M ESFET 理论, 由 (2) 式和 (5) 式可推算出沟道掺杂的浓度 N 和 沟道厚度 a

对于非均匀掺杂沟道器件, 如果把(3) 式对 $\eta(V_g)$ 的定义扩展到非均匀掺杂沟道器件. 则 $R_{ds}(V_g)$ 与 ζ_g $\eta(V_g)$ 偏离线性关系(如图 2 所示). 为此, 我们将 $R_{ds}(V_g)$ 表达成 $\eta(V_g)$ 的一般函数形式, 以便用最优化方 法从 $R_{ds}(V_g)$ 中分离出本征沟道电阻 $R_1(V_g)$.

GaA s M ESFET 线性区源漏间电阻 $R_{cs}(V_g)$ 可划分为以下几个部分: 不随栅压变化的源电阻 R_{cs} 和漏电阻 R_{cs} 0, 随栅压变化的源电阻 R_{cs} 1和漏电阻 R_{cs} 1及栅下本征沟道电阻 $R_{cs}(V_g)$ 所组成 (如图 1 所示). 其中的 $R_{cs}(V_g)$ 并不一定与 $\eta(V_g)$ 成线性关系 因此.

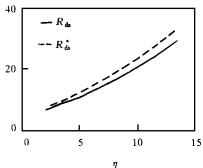


图 2 —— $R_{ds}(V_g) - \eta(V_g)$ 曲线; --- $R_{ds}(V_g) - \eta(V_g)$ 曲线

 $GaA \ sM \ ESFET$ 线性区源漏间电阻 Ras(Vg) 可表达为一般形式:

$$R_{ds}(V_g) = R_{s0} + R_{d0} + R_{s1} + R_{d1} + R_{i}(V_g)$$
 (7)

在磁场强度为B 的磁场中, $GaA \ sM \ ESFET$ 线性区源漏间电阻也可表达为:

$$R_{ds}^{\star}(V_{g}) = R_{s0}^{\star} + R_{d0}^{\star} + R_{s1}^{\star} + R_{d1}^{\star} + R_{i}^{\star}(V_{g})$$
(8)

如果我们知道在有磁场和无磁场条件下的本征沟道电阻 $R_i^*(V_g)$ 和 $R_i(V_g)$ 与 V_g 的函数, 就可算出 GaA s M ESFET 沟道掺杂浓度分布 N(x) 和迁移率分布 $\mu(x)$. 下面我们将推导在一般情况下, 由 $R_i^*(V_g)$ 和 $R_i(V_g)$ 函数计算 GaA s M ESFET 沟道掺杂浓度分布 N(x) 和迁移率分布 $\mu(x)$ 的计算公式

2 1 掺杂浓度分布测定公式

假设沟道中只有施主, 且全部离化 沟道中导电电子浓度 n(x) = N(x), 栅下沟道电导 $G_i(V_g)$ 可表达为:

$$G_{i}(V_{g}) = \frac{1}{R_{i}(V_{g})} = \frac{qw \, n(x) \, \mu(x)}{L_{g}} dx$$
 (9)

其中 $\mu(x)$ 为载流子在 X 平面上的横向迁移率; q 为电子电荷; w 为栅宽; L_s 为栅长; $h(V_s)$ 为在栅压 V_s 下,栅下耗尽层宽度 (即耗尽层边界离开 GaAs 表面的距离 $x(V_s)$). 本征沟道电导随栅压 V_s 的变化率,可表达为:

$$\frac{\mathrm{d}G_{\mathrm{i}}(V_{\mathrm{g}})}{\mathrm{d}V_{\mathrm{g}}} = \frac{\mathrm{d}G_{\mathrm{i}}(V_{\mathrm{g}})}{\mathrm{d}h(V_{\mathrm{g}})} \times \frac{\mathrm{d}h(V_{\mathrm{g}})}{\mathrm{d}V_{\mathrm{g}}} = \frac{-n(x)q\mu(x)w}{L_{\mathrm{g}}} \times \frac{\mathrm{d}h(V_{\mathrm{g}})}{\mathrm{d}V_{\mathrm{g}}}$$
(10)

根据电容的定义,肖特基势垒本征栅电容 $C_{gs}(V_g)$ 可表达为:

$$C_{gs}(V_g) = \frac{dQ}{dV_g} = -n(x) qw L_g \frac{dh(V_g)}{dV_g}$$
(11)

(11) 式中的负号表示栅下耗尽层宽度 $h(V_g)$ 随栅压的增大而减小 $C_{gs}(V_g)$ 又可表达为:

$$C_{gs}(V_g) = \frac{\mathcal{E}_W L_g}{h(V_g)}$$
 (12)

由(11)和(12)相等,可得:

$$\frac{\mathrm{d}h\left(V_{\mathrm{g}}\right)}{\mathrm{d}V_{\mathrm{g}}} = \frac{-\epsilon\epsilon_{0}}{n\left(x\right)qh\left(V_{\mathrm{g}}\right)} \tag{13}$$

将(13)式代入(10)式,可得到 $h(V_g)$ 的测量公式:

$$x (V_g) = h(V_g) = \frac{\epsilon G_W \mu(x)}{L_g dG_i(V_g)/dV_g}$$
(14)

将(14)式代入(13)式,整理后可得掺杂浓度分布的测量公式:

$$N(x) = n(x) = \frac{2}{q\epsilon\epsilon_0} \times \left(\frac{L_g}{\mu(x)w}\right)^2 \times \left[\frac{d\left(\frac{dG_i(V_g)}{dV_g}\right)^{-2}}{dV_g}\right]^{-1}$$
(15)

2 2 迁移率分布 μ(x) 测量公式

沟道纵向迁移率分布测定是利用半导体的几何磁阻效应 当在垂直于 $GaA \ s \ M \ ESFET$ 表面的方向上存在强度为B 的磁场时,则源漏间电阻 $R \ ds \ (V \ g)$ 变为 $R \ ds \ (V \ g)$. 在栅压从 $V \ g$ 变到时 $V \ g+ \ \Delta V \ g$,栅下耗尽层宽度从 $h \ (V \ g)$ 变化到 $h \ (V \ g+ \ \Delta V \ g)$.

$$\Delta h (V_g) = h (V_g + \Delta V_g) - h (V_g)$$
 (16)

 $\Delta h(V_g)$ 半导体薄层在无磁场时的电导为:

$$\Delta G_{i}(V_{g}) = G_{i}(V_{g}) - G_{i}(V_{g} + \Delta V_{g})$$

$$(17)$$

在磁场强度为B 的磁场中, $\Delta h(V_g)$ 层的电导改变为

$$\Delta G_{i}^{\star} (V_{g}) = G_{i}^{\star} (V_{g}) - G_{i}^{\star} (V_{g} + \Delta V_{g})$$

$$(18)$$

根据半导体几何磁阻效应原理^[3,4], 在弱磁场条件下($\mu_H B \ll 1$), 科比诺圆盘(Corbino disk) 在有磁场和无磁场时的电阻 R_B 和 R_0 的比值为:

$$\frac{R_{\rm B}}{R_0} = \frac{\rho_{\rm B}}{\rho_0} (1 + \mu_{\rm H}^2 B^2) \tag{19}$$

$$\frac{\rho_{\rm B} - \rho_0}{\rho_0} = \xi \mu_{\rm H}^2 B^2 \tag{20}$$

其中 ρ_b 和 ρ_0 分别为在有磁场和无磁场条件下半导体的电阻率; B 为磁场强度; μ_H 为霍耳迁移率; ξ 称为横向磁阻系数, 对于掺杂浓度> 10^{15} /cm 3 的 GaA s 材料来说, 电离杂质散射是载流子主要的散射机构, 所以 ξ_D 0. $57^{[3,5]}$. 一般 GaA s M ESFET 的单个栅宽 w > 50 μ m , 栅长 L_g 在亚微米量级, 即 $w \gg L_g$ 因此, 可以认为 GaA s M ESFET 的横向磁阻效应类似于科比诺圆盘 $^{[4]}$. 根据 (19) 式和 (20) 式, 在有磁场和无磁场条件下, 此 Δh (V_g) 薄层电导的比值应为:

$$\frac{\Delta G_{i}(V_{g})}{\Delta G_{i}^{*}(V_{g})} = (\xi \mu_{H}^{2} B^{2} + 1)(1 + \mu_{H}^{2} B^{2})$$
(21)

 $GaA \ s \ M \ ESFET \ 沟道掺杂浓度一般 <math>10^{16} \ cm^3 \ 左右$,对于 $GaA \ s \ M \ ESFET \ 材料而言$, $GaA \ s \ 导带中的载流子已处于简并状态,故漂移迁移率 <math>\mu=\mu_H$ 解方程 (21) 式,可求出漂移迁移率分布 $\mu(x)$ 的测量公式:

$$\mu(x) = \mu_{\rm H}(x) = \frac{1}{B} \sqrt{-\frac{\xi + 1}{2\xi} + \sqrt{\frac{\xi^2 - 2\xi + 1}{4\xi^2} + \frac{\Delta G_{\rm i}(V_{\rm g})}{\xi \Delta G_{\rm i}^*(V_{\rm g})}}}$$
(22)

(22) 式可改写成微分形式:

$$\mu(x) = \frac{1}{B} \sqrt{-\frac{\xi + 1}{2\xi} + \sqrt{\frac{\xi^2 - 2\xi + 1}{4\xi^2} + \frac{1}{\xi} \times \frac{dG_i(V_g)/dV_g}{dG_i^*(V_g)/dV_g}}}$$
(23)

一般霍耳法测定半导体材料迁移率时,测量的是整个有源层的表观迁移率 为了比较霍耳法与本法的测量结果,我们引入平均迁移率 μ 的概念 用霍耳法测量 GaA s 材料时,自然 GaA s 表面也因表面费米能级锁定现象而存在表面势垒 [0] 可以合理地假设,此表面内建势的值,近似等于 V b 因此,用霍耳法测量 GaA s 材料迁移率时的条件,与在 V g= 0 的条件下,用磁阻法测定 GaA s M ESFET 沟道迁移率的条件相似 在 V g= 0 时,在有磁场条件下本征沟道电阻 R i (V g) 与无磁场条件下本征沟道电阻 R i (V g) 的比值为:

$$\frac{R_{i}^{*}(V_{g})}{R_{i}(V_{g})} = \frac{\rho_{B}}{\rho_{0}} (1 + \frac{-\mu_{H}^{2}B^{2}}{\mu_{H}^{2}B^{2}})$$
 (24)

由(24)式和(20)式,可求出 <u>µ</u>:

$$\frac{-}{\mu} = \frac{1}{\mu_{\rm H}} = \frac{1}{B} \sqrt{-\frac{\xi + 1}{2\xi} + \sqrt{\frac{\xi^2 - 2\xi + 1}{4\xi^2} + \frac{G_1(0)}{\xi G_1^+(0)}}}$$
(25)

3 实验数据的最优化方法处理

在实际的 GaA sM ESFET 中,一般栅长 L_s 比有源层厚度大三倍以上 二维数值分析表明,栅耗尽层的横向扩展深度远小于纵向深度 而且由于源漏间电流路径分布在栅的两侧下方随栅压变化不大,因而我们可以近似地认为: $R_{s1}=R_{d1}=0$ 和 $R_{s1}=R_{d1}=0$ (7) 式和(8) 式可改写为:

$$R_{ds}(V_g) = R_{s0} + R_{d0} + R_i(V_g)$$
 (7)

$$R_{ds}^{\star}(V_{g}) = R_{s0}^{\star} + R_{d0}^{\star} + R_{i}^{\star}(V_{g})$$

$$(8)$$

由于沟道是非均匀掺杂,本征沟道电阻 $R_i(V_g)$ 与 $\eta(V_g)$ 成非线性关系 从物理机构上来看 (见图 2), $R_i(V_g)$ 应当是 $\eta(V_g)$ 的一个递增函数 在 $\eta(V_g)$ 0 的区域内, $\frac{dR_i^2(V_g)}{d(\eta(V_g))^2}$ 必须处处大于零. 而且,当 $\eta(V_g)$ = 0 时, $R_i(V_g)$ 应当等于零. 原则上来讲,任何满足上述条件的函数形式都可作为 R_i 的表达形式. 只要在最优化过程中,目标函数的极值能够达到所需要的精度即可. 作为一个例子,我们将 $R_i(V_g)$ 展开成 $\eta(V_g)$ 的幂级数:

$$R_{i}(V_{g}) = A \eta(V_{g}) + B \eta(V_{g}) + C \eta(V_{g}) + \dots$$
 (26)

在磁场强度为B 时, 我们也将 $R^{*}(V_{s})$ 展开成 $\eta(V_{s})$ 的幂级数

$$R_{i}^{\star}(V_{g}) = A^{\star} \eta(V_{g}) + B^{\star} \eta(V_{g}) + C^{\star} \eta(V_{g}) + \dots$$
 (27)

将(26)式和(27)式分别代入(7)式和(8)式可得到 $R_{ds}(V_{g})$ 和 $R_{ds}^{*}(V_{g})$ 的一般表达式:

$$R_{ds}(V_{g}) = R_{s0} + R_{d0} + A \eta(V_{g}) + B \eta(V_{g}) + C \eta(V_{g}) + \dots$$
 (28)

$$R_{ds}^{\star}(V_{g}) = R_{s0}^{\star} + R_{d0}^{\star} + A^{\star} \eta_{(V_{g})} + B^{\star} \eta_{(V_{g})} + C^{\star} \eta_{(V_{g})} + \dots$$
 (29)

为了求得(28) 式中的 $(R_{s0}+R_{d0})$ 的值和待定系数 $A_sB_sC_s$...等的值,我们采用最优化方法,从实测的 R_{ds} - V_g 数据中求出 $(R_{s0}+R_{d0})$ 和 $A_sB_sC_s$...等的值 首先,我们把(28) 式作为原函数 然后建立目标函数 求解目标函数极小值时的变量值 最优化方法的核心问题,就是在某定域内求解目标函数的极值 我们定义目标函数为:

$$F(x_1, x_2, ..., x_n) = \int_{j=1}^{m} \left(\frac{R_{dsj}(x_1, x_2, ..., x_n) - r_{dsj}(\eta(V_g))}{r_{dsj}(\eta(V_g))} \right)^2$$
(30)

其中 $r_{dsj}(x_1, x_2, ..., x_n)$ 为 GaA sM ESFET 源-漏间线性区电阻的计算值(即由原函数计算出的 R_{ds} 值), $r_{dsj}(\eta(V_g))$ 为实际测量值, n 为自变量的个数, m 为测量点的个数 在我们的实验中, m=150, n=6, 自变量 $x_1 \sim x_6$ 分别为(28) 式中的 A_{s} , B_{s} , C_{s} ... 和 $(R_{s0}+R_{d0})$. 我们采用单纯型调优法和鲍威尔法等最优化方法 $R_{s0}+R_{d0}$ 的值 将求得的变量的值 用类似的方法, 也可求出 $R_{s0}+R_{s0}+R_{d0}$ 的值 将求得的变量值代入(26) 和 $R_{s0}+$

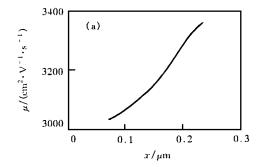
4 实验方法

全部测试过程和数据处理, 均由计算机辅助测试系统自动完成 $^{[8]}$. 肖特基势垒内建电势 V_b , 是用 I-V 法测定 夹断电压 V_p 值, 则是根据测定 R_d (V_g) - V_g 的关系, 换算成 G_d (V_g) - V_g

关系(即 $\frac{1}{R_{ds}(V_g)}$ - V_g 关系),然后用曲线拟合法求出 $G_{ds}(V_g)$ 的函数表达式,并令此函数表达式等于零,由方程式的解,求出 V_p 值 我们以 V_g 为参变量,在 V_{ds} 0.026V 条件下(以确保栅耗尽层边界平行于 GaAs 表面),在有磁场和无磁场条件下,由计算机辅助测试系统自动逐点测量 $R_{ds}(V_g)$ - V_g 和 $R_{ds}(V_g)$ - V_g 关系 测到的原始数据,自动存入计算机数据区 由计算机数据处理程序将测到的 $R_{ds}(V_g)$ - V_g 及 $R_{ds}(V_g)$ - V_g 转换成 $R_{ds}(V_g)$ - $\eta(V_g)$ 与 $R_{ds}(V_g)$ - $\eta(V_g)$. 然后,由最优化处理程序和沟道掺杂浓度分布及迁移率分布计算程序,求出 GaAs M ESFET 的沟道掺杂浓度分布N(x) 及迁移率分布 $\mu(x)$.

5 实验结果

我们成功地用此法测定了一些 GaA sM ESFET 沟道的掺杂浓度分布和迁移率分布 作为一个例子, 图 3 给出用此法测定的一种离子注入 GaA sM ESFET 的结果



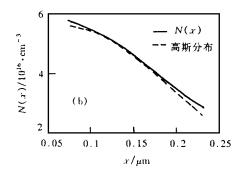


图 3 (a) 迁移率分布图; (b) 掺杂分布图 —— 掺杂分布曲线; --- 高斯分布曲线

测得肖特基势垒内建电势 $V_b=0.725V$,夹断电压 $V_p=-1.926V$. 测到的有源层掺杂分布, 在 $x=0.06 \sim 0.21 \mu m$ 之间遵循高斯分布 其峰值在 $x=0.065 \mu m$ 处 浓度为 $N_{max}=0.5937 \times 10^{17} / cm^3$. 方差 $\sigma=0.1336 \mu m$. 平均沟道掺杂浓度为 $N=0.475 \times 10^{17} / cm^3$. 在 $x=0.1 \mu m$ 区域内, 掺杂分布偏离高斯分布, 是因为为降低 $GaA \times M$ ESFET 源漏电阻而引入的高掺杂浅注入层尾部的影响 由磁阻法测定的沟道平均迁移率 $\mu=3215 cm^2/(V \cdot s)$,此值与用普通霍耳法测定的 $GaA \times M$ 处层或离子注入有源层的霍耳迁移率相似 (3000~3800 $cm^2/(V \cdot s)$). 该器件沟道的迁移率分布, 朝衬底方向递增, 从表面处的 3038 $cm^2/(V \cdot s)$ 到界面的 3363 $cm^2/(V \cdot s)$. 沟道中迁移率朝衬底方向递增, 说明此有源层-衬底界面质量比较好[91 . 在对 $R_{ds}(V_g)$ 和 $R_{ds}(V_g)$ 实验数据最优化过程中, 目标函数的极小值分别为 $1.0447007 \times 10^{-6} \times 1.06882 \times 10^{-6} \times 10.0447007 \times 10^{-6} \times 10.06882 \times 10^{-6} \times 10.0447007 \times 10^{-6} \times 10.0447007 \times 10^{-6} \times 10.06882 \times 10^{-6} \times 10.0447007 \times$

献 文

- [1] P. L. Horwer and N. G. Bechtel, IEEE Trans Electron Devices, 1973, 20(2): 213.
- [2] H. Fujui, Bell System Technical Journal, 1979, 58(3): 771.
- [3] 刘恩科, 朱秉升, 等, 半导体物理学, 北京: 国防工业出版社, 1979年, 320
- [4] F. Kuhrt, IEEE Trans Electron Devices, 1980, 27(12): 2277.
- [5] H. Poth, Solid-State Electronics, 1978, 21(6): 801.

7期

- [6] P. Skeath, W. A. Saperstein et al., J. Vac Sci Technol, 1978, 15(4): 1219.
- [7] 数学手册编写组,数学手册,北京:高等教育出版社,1979.
- [8] 张俊岳, 等, 通用于四端器件测试的计算机读入设备, 科技通讯, 1984, (3): 48
- [9] H. M. Cox and J. V. Dilorezo, Inst Phys Conf. Ser., 1976, 33(B): 11.

In-situ Determination of Both Doping and Drift M obility Profiles in GaAsM ESFET

Zhang Youyu

(H ebei Institute of Sem iconductor, Shijiazhuang

Cheng Zhaonian, Zhang Junyue

(Shanghai Institute of Matallurgy, The Chinese Academy of Sciences, Shanghai 200050)

Received 17 April 1997, revised manuscript received 15 November 1997

Abstract On Basis of optim ization technique, a new method to determ ine both doping and drift mobility profiles (n(x)) and $\mu(x)$ in GaA sM ESFET is presented. A model to determ ine these profiles is developed. Optim ization technique is used in the data treatment. The computer-aided measurement system equipped with analytic program of this method is capable of providing correct results quickly.

PACC: 2560S