X-Band GaN Power HEMTs with Power Density of 2. 23 W/ mm Grown on Sapphire by MOCVD^{*}

Wang Xiaoliang¹, Liu Xinyu², Hu Guoxin¹, Wang Junxi¹, Ma Zhiyong¹, Wang Cuimei¹, Li Jianping¹, Ran Junxue¹, Zheng Yingkui², Qian He², Zeng Yiping¹, and Li Jinmin¹

(1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China)
(2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract : The growth , fabrication , and characterization of 0. 2µm gate-length Al GaN/ GaN HEMTs , with a high mobility GaN thin layer as a channel ,grown on (0001) sapphire substrates by MOCVD ,are described. The unintentionally doped 2. 5µm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of $741 \text{cm}^2/(\text{V} \cdot \text{s})$ at an electron concentration of $1.52 \times 10^{16} \text{cm}^{-3}$. The resistivity of the thick GaN buffer layer is greater than $10^8 \cdot \text{cm}$ at room temperature. The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9 / with uniformity better than 96%. Devices of 0. 2µm ×40µm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of 77 GHz. The Al GaN/ GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8 GHz. The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.

 Key words:
 Al GaN/ GaN;
 HEMT;
 MOCVD;
 power device

 PACC:
 8115H;
 6855
 EEACC:
 2560S;
 0520F;
 2560P

 CLC number:
 TN304.
 2⁺
 Document code:
 A
 Article ID:
 0253-4177 (2005) 10-1865-06

1 Introduction

Al GaN/ GaN high electron mobility transistors (HEM Ts) have recently attracted much attention due to their potential for their applications in highpower, high-temperature, high-frequency microelectronic devices^[1-5]. GaN possesses large band gap (3. 4eV), very high breakdown field (3 × 10^{6} V/cm), and extremely high peak (3 × 10^{7} cm/s) and saturation velocity (1. 5 × 10^{7} cm/s)^[6]. These properties in combination with the large conduction band offset and the high-density two-dimensional electron gas (2DEG) on the order of 10^{13} cm⁻² at the AlGaN/GaN interface, make the AlGaN/GaN heterostructures superior to conventional semiconductor heterostructures such as GaAs-based and InP-based ones in the field of high power and high temperature microelectronic devices^[1,4]. Such semiconductor devices are very attractive for power applications at X-band and even above.

In recent years, tremendous progress has been made in the DC and RF performance of GaN based HEMTs due to improving crystal quality in Al-

^{*} Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences, the National Natural Science Foundation of China (No. 60136020), the State Key Development Program for Basic Research of China (Nos. G20000683, 2002CB311903), and the National High Technology R &D Program of China (No. 2002AA305304)

Wang Xiaoliang male, was born in 1963, professor. His current research interests are in MOCVD and MBE growth of - nitride materials and devices.

Received 28 February 2005, revised manuscript received 24 May 2005

GaN/ GaN structures and optimization of device processing. Al GaN/ GaN HEM Ts grown on SiC substrates with dimensions of 0.55µm ×246µm and a field-plate length of 1.1µm have already demonstrated a continuous wave output power density of 32.2W/ mm and power-added efficiency (PAE) of 54.8% at 4 GHz; devices with a shorter field plate of 0.9µm also generated 30.6W/ mm with 49.6% PAE at 8 GHz^[7]. A current gain cutoff frequency (f_T) of 121 GHz and maximum frequency of oscillation (f_{max}) of 162 GHz were measured on the Al-GaN/ GaN HEMT with a 0. 12µm gate-length grown on SiC substrate^[8].

We have previously reported RF-MBE grown Al GaN/ GaN HEM Ts with gate length and width of 1 and 80µm, respectively, and obtained a draincurrent density of 925mA/mm, a peak transconductance of 186mS/mm, and a f_{T} of 18.8 GHz^[9]. We have also reported a RF-MBE grown AlGaN/ GaN HEMT with high Al content^[10]. In this paper, X-Band AlGaN/GaN power HEMTs with a power density of 2. 23W/mm at 8GHz grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrates are reported. To raise the 2DEG mobility in the channel, an unintentionally doped GaN thin layer with high mobility was inserted between AlGaN barrier and GaN buffer with high resistivity. The 50mm HEMT wafers with this structure grown on (0001) sapphire substrates by MOCVD exhibit a sheet resistance of 440.9 /

with uniformity better than 96 %. The HEMT devices with 0. 2µm ×40µm gate periphery fabricated using the epi-wafers exhibit a maximum extrinsic transconductance of 250mS/mm and a $f_{\rm T}$ of 77 GHz. The Al GaN/ GaN HEMTs with 0. 8mm gate widths display a total output power of 1.78W (2. 23W/mm) and a linear gain of 13. 3dB at 8 GHz. The power devices also show a saturated current density as high as 1. 07A/mm at a gate bias of 0.5V.

2 Structure growth and device fabrication

The AlGaN/ GaN HEMT structures were grown on (0001) sapphire substrates by MOCVD. The cross-section of the HEMT devices is shown in Fig. 1. The growth of the structure began with an unintentionally doped 2.8µm thick high resistive GaN buffer layer, followed by an undoped 110nm thick GaN layer with high mobility as the channel layer. Finally ,about 5nm undoped and 150 nm Si-doped Al GaN barrier layers were grown. In contrast to a conventional AlGaN/GaN HEMT structure, this AlGaN/ GaN HEMT structure employed an undoped high mobility GaN thin layer as the channel layer ,which significantly enhancing the mobility of the 2DEG in the channel ,and therefore helping to improve the performances of the fabricated AlGaN/ GaN HEMT devices.

The HEMT structural materials were then processed into devices with a source-drain spacing of 3μ m and a gate length of 0. 2μ m. First, the device isolation was achieved by using multiple-energy helium ion implantation. Then, source and drain ohmic contacts were formed by rapid thermal annealing of electron-beam evaporated Ti/Al/Ti/Au in N₂ ambient at 750 for 30s. Finally, the Schottky gate was defined by lift-off technology and the gate metallization was realized by using electronbeam evaporated Pt/Ti/Au.

3 Results and discussion

To improve 2DEG transport properties of the AlGaN/GaN HEMT structure, an unintentionally doped 110nm thick GaN layer with high electron mobility was introduced into the HEMT structure. This thin GaN layer was grown between the Al-GaN barrier layer and the thick high resistive GaN buffer layer, using the identical growth conditions to those of the 2.5 μ m thick bulk GaN epilayers. The variable-temperature Hall measurement re-

Fig. 1 Schematic cross section of an AlGaN/GaN HEMT

sults for the 2.5µm thick bulk GaN epilayer are shown in Fig. 2. From this figure we know that the room temperature Hall mobility of the bulk GaN film grown on sapphire substrate is as high as $741 \text{cm}^2/(\text{V} \cdot \text{s})$ at a background electron concentration of only 1.52 $\times 10^{16}$ cm⁻³. As the temperature decreases, the Hall mobility increases gradually up to its maximum value $2020 \text{ cm}^2/(\text{V} \cdot \text{s})$ at 149 K, and then decreases. The background electron concentration will increase with raising temperature. To the best of our knowledge, the obtained room temperature mobility value for the unintentionally doped 2.5µm-thick bulk GaN is one of the best results in the world using the same growth technique. The HEMT devices will benefit from the HEMT structure, with the thin GaN layer as the channel, which was grown using the same growth conditions as those of the thick bulk GaN layer with high mobility.

As shown in Fig. 1, just below the GaN channel layer with high mobility, there is a thick GaN buffer layer. The first priority of this layer is to have high resistivity to prevent current leakage between source and drain. Using unintentionally doped growth technique, which we have applied for patent, we successfully achieved high resistive GaN layer on sapphire substrate. Its electrical resisitivity dependence on temperature is shown in Fig. 3.

Fig. 2 Electron mobility and concentration as a function of sample temperature for an unintentionally doped 2.5mm thick bulk GaN epilayer on sapphire

From this figure we acquire that the resistivity of the GaN buffer is 2.9 $\times 10^8$ ·cm at room temperature, which corresponding to a sheet resistance larger than 10^{12} / ,about three orders of magnitude higher than the sheet resistance value (10^9 /

) reported by Lee *et al.* ^[11]. When the temperature is increased to 673 K, the resistivity of the GaN buffer is 2×10^5 · cm. Therefore, even at high temperatures, the GaN buffer layer has high resisitivity and can effectively prevent leakage current between source and drain from happening. For high power devices or high operation temperatures, this is very important.

Fig. 3 Temperature dependence of the electrical resistivity of the 2. 8μ m thick GaN buffer layer grown on sapphire substrates by MOCVD

Sheet resistance mapping of the grown Al-GaN/ GaN HEMT wafer was conducted by a Lehighton Electronics using a contact-less measurement system. The measured sheet resistance map for the 50mm HEMT wafer is shown in Fig. 4. The wafer exhibits a maximum resistance of 467.3 / and a minimum value of 417.3 / . The average sheet resistance is 440.9 / ,with the resistance uniformity being 96.5 %.

Fig. 4 Sheet resistance mapping of the grown 50mm Al GaN/ GaN HEMT wafer

The direct current (DC) characteristics of the AlGaN/GaN HEMT devices fabricated with the 50mm HEMT wafer were measured using HP4142 and HP4155 semiconductor parameter analyser. Shown in Fig. 5 is a typical drain current-voltage $(I_{ds}-V_{ds})$ characteristics measured for a device with gate length and width of 0. 2µm and 0. 8mm, respectively. The source-drain spacing of the device is 3μ m. The gate is biased from 0.5 to - 5V in the step of - 0.5V. The device exhibited a maximum drain current density of 1.07A/mm at a gate bias of 0. 5V. The pinch-off voltage of this device was about - 5V and the knee voltage was between 4 \sim 5V. At high current levels significant self-heating of the devices took place for the poor thermal conductivity of sapphire substrates, limiting the maximum drain current. This makes it clear that SiC should be chosen as a thermally highly conductive substrate to overcome the self-heating problem. All the HEMT devices measured exhibit good saturation and pinch-off characteristics.

DC transfer characteristics of a typical 0.2 μ m ×40 μ m A1GaN/GaN HEMT are shown in Fig. 6, which was measured when the drain-to-source volt-

Fig. 5 I_d - V_{ds} characteristics of a typical A1GaN/GaN HEMT grown on sapphire substrate with gate length and width of 0.2µm and 0.8mm ,respectively

age was kept at 6V. On this figure, the drain current and transconductance are plotted against gate bias voltage. It is obvious that this device has reached a maximum extrinsic transconductance of 250mS/mm at $V_g = -4.5V$. As the gate bias voltage increases, the drain current will increase and incline to saturate gradually. Whereas the transconductance exhibits a different variation tendency:it increases rapidly first, up to its maximum value, and then decreases.

Fig. 6 DC transfer characteristics of a typical A1 GaN/ GaN HEMT grown on sapphire substrate with gate length and width of 0.2 and 40µm, respectively

To investigate high frequency characteristics of the devices, small-signal S-parameter measurements were made. From the S-parameters, current gain $h_{(2,1)}$ can be calculated. Figure 7 shows the small signal frequency response from the typical 0. 2μ m ×40 μ m A1GaN/GaN HEMT device. An extrinsic $f_{\rm T}$ of 77GHz was extrapolated. We believe that such a high $f_{\rm T}$ can be partly attributed to the insertion of the thin high mobility GaN layer between the AlGaN barrier and the high resistive GaN buffer layer.

Fig. 7 Small signal RF characteristic of the 0. $2\mu m \times 40\mu m$ Al GaN/ GaN HEMT device

On-wafer power measurements at 8 GHz were performed using a focus load-pull system. The power performance of the 0. $2\mu m \times 0.8 mm$ device biased at $V_{ds} = 30V$ is shown in Fig. 8. The device had a linear gain of 13. 3dB. The measured continuous wave (CW) output power is 32. 5dBm (1. 78W) and the corresponding output power density is 2. 23 W/mm.

Fig. 8 Power performance of the 0. $2\mu m \times 0.8 mm$ A1 GaN/ GaN HEMT at 8 GHz The device was biased at $V_{ds} = 30V$.

4 Conclusion

50mm AlGaN/ GaN HEMT wafers with a high mobility GaN thin layer as the channel are grown by MOCVD on (0001) sapphire substrates and 0. 2µm gate-length HEMT devices are fabricated. The unintentionally doped bulk GaN epilayers with thickness of 2.5µm have a room temperature mobility of $741 \text{ cm}^2/(\text{V} \cdot \text{s})$ at an electron concentration of 1. 52 $\times 10^{16}$ cm⁻³. The resistivity of the GaN buffer layer is greater than 10⁸ ·cm at room temperature. The 50mm HEMT wafer shows an average sheet resistance of 440.9 / with uniformity better than 96 %. The fabricated HEMT devices exhibit a high drain current and DC transconductance of 1. 07A/mm and 250mS/mm, respectively. The current-gain cut-off frequency of the devices with gate width of 40µm is measured to be about 77 GHz. The devices with gate width of 0.8 mm also display a high total output power of 1.78 W (2. 23 W/mm) with a linear gain of 13.3dB at 8 GHz. Our results show that GaN HEMT with a thin layer of high mobility GaN as a channel between the AlGaN barrier and the high resistive GaN buffer layer has strong potential for power applications at X-band frequencies.

References

- Gasa R, Shur M S, Bykhovski A D, et al. Electron mobility in modulation-doped Al GaN/ GaN heterostructures. Appl Phys Lett, 1999, 74:287
- [2] Sun Dianzhao, Hu Guoxin, Wang Xiaoliang, et al. Al GaN/GaN polarization-induced two-dimensional electron gas materials grown by radio-frequency plasma assisted molecular beam epitaxy. Chinese Journal of Semiconductors, 2001,22 (11):1425 (in Chinese) [孙殿照,胡国新,王晓亮, 等. RF-MBE生长 Al GaN/GaN 极化感应二维电子气材料.半 导体学报,2001,22(11):1425]
- [3] Wu Yifeng, Kapolnek D, Ibbetson J P, et al. Very-high power density Al GaN/ GaN HEMTs. IEEE Trans Electron Devices, 2001,48:586
- [4] Li L K, Turk B, Wang W I, et al. High electron mobility Al-GaN/ GaN heterostructures grown on sapphire substrates by

molecular beam epitaxy. Appl Phys Lett ,2000 ,76:742

- [5] Hu Guoxin, Wang Xiaoliang, Sun Dianzhao, et al. Two-dimensional electron gas materials with AlN/GaN superlattice structure grown by radio-frequency plasma-assisted molecular beam epitaxy. Chinese Journal of Semiconductors, 2003, 24 (6):602 (in Chinese) [胡国新,王晓亮,孙殿照,等. RF-MBE 生长 AlN/GaN 超晶格结构二维电子气材料. 半导体学报, 2003, 24(6):602]
- [6] Keller S, Wu Yifeng, Parish G, et al. Gallium nitride based high power heterojunction field effect transistors :process development and present status at UCSB. IEEE Trans Electron Devices ,2001,48:552
- [7] Wu Y F, Saxler A, Moore M, et al. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett, 2004,

25(3):117

- [8] Kumar V, Lu W, Schwindt R, et al. Al GaN/ GaN HEMTs on SiC with f_T of over 120 GHz. IEEE Electron Device Lett, 2002,23(8):455
- [9] Wang Xiaoliang, Hu Guoxin, Wang Junxi, et al. Characteristics of Al GaN/ GaN HEM Ts grown by plasma-assisted molecular beam epitaxy. Chinese Journal of Semiconductors, 2004, 25(2):121
- [10] Wang Xiaoliang , Wang Cuimei , Hu Guoxin , et al. RF-MBE grown AlGaN/ GaN HEMT structure with high Al content. Chinese Journal of Semiconductors ,2005 ,26(6) :1116
- [11] Lee J H, Lee M B, Hahm S H, et al. Growth of semi-insulating GaN layer by controlling size of nucleation sites for SAW device applications. Internet J Nitride Semicond, 2003, 8(5):1

输出功率密度为 2.23W/ mm 的 X 波段 Al Ga N/ Ga N 功率 HEMT 器件^{*}

王晓亮'刘新宇² 胡国新'王军喜'马志勇'王翠梅'李建平' 冉军学'郑英奎² 钱 鹤² 曾一平'李晋闽¹

(1中国科学院半导体研究所,北京 100083)(2中国科学院微电子研究所,北京 100029)

摘要:用 MOCVD 技术在蓝宝石衬底上制备出具有高迁移率 GaN 沟道层的 AI GaN/ GaN HEMT 材料.高迁移率 GaN 外延层的室温迁移率达 741 cm²/ (V · s),相应背景电子浓度为 1.52 ×10¹⁶ cm⁻³;非有意掺杂高阻 GaN 缓冲层 的室温电阻率超过 10⁸ · cm,相应的方块电阻超过 10¹² / .50 mm HEMT 外延片平均方块电阻为 440.9 / , 方块电阻均匀性优于 96%.用此材料研制出了 0.2µm 栅长的 X 波段 HEMT 功率器件,40µm 栅宽的器件跨导达到 250 mS/ mm,特征频率 $f_{\rm T}$ 为 77 GHz;0.8 mm 栅宽的器件电流密度达到 1.07 A/ mm,8 GHz 时连续波输出功率为 1.78 W,相应功率密度为 2.23 W/ mm,线性功率增益为 13.3 dB.

关键词: A1GaN/ GaN; 高电子迁移率晶体管; MOCVD; 功率器件
 PACC: 8115H; 6855
 EEACC: 2560S; 0520F; 2560P
 中图分类号: TN304.2⁺4
 文献标识码: A
 文章编号: 0253-4177(2005)09-1865-06

^{*} 中国科学院知识创新工程、国家自然科学基金(批准号:60136020)、国家重点基础研究发展规划(批准号:G20000683,2002CB311903)和国 家高技术研究发展计划(批准号:2002AA 305304)资助项目 王晓亮 男,1963年出生,博士,研究员,博士生导师,目前主要从事氮化物材料的 MOCVD 和 MBE生长、物理及器件应用研究. 2005-02-28 收到,2005-05-24 定稿 c 2005 中国电子学会