Fe/Pt

1

2

Fe/Pt

Pt

UHV
3

1. FePt(40nm)

2. FePt-L10

Fig. 2 XRD patterns for [Fe(1.5nm)/Pt(1.5nm)]13 multilayer films

$$\Lambda = \frac{\lambda}{2\sin\theta}$$

(1)

Fig. 1 XRD patterns for FePt(40nm) thin films
In heat treated samples, the coercivity reached 13 T. This indicates the samples have shown very strong magnetic behavior. 2 Also, it suggests that the ordering degree is already high. 2

Figure 0* shows the hysteresis loops for [Fe (1.5nm)/Pt (1.5nm)]13 multilayers and FePt (40nm) thin films at various annealing temperatures. 2

Figure 3 shows the hysteresis loops for [Fe (1.5nm)/Pt (1.5nm)]13 multilayers and FePt (40nm) thin films. 2

For FePt, the coercivity is 23.9 kA/m. 0 When the thickness of the layers is increased, the coercivity decreases. 2

Figure 4 shows the annealing temperature (T) dependence of the ordering parameter (S) and coercivity (Hc) for [Fe (1.5nm)/Pt (1.5nm)]13 multilayer and FePt thin films. 2

Figure 5 shows the coercivity of [Fe(x)/Pt(x)]n multilayers at 350°C annealing temperature. 2

The ordering parameter S is given by:

\[
S = \frac{1 - (c/a)_{S_0}}{1 - (c/a)}
\]

where (c/a) is the ratio of the lattice parameters of the iron and platinum layers, (c/a)_{S_0} is the ratio of the lattice parameters of the fully ordered state, and n is the number of layers. 2

In conclusion, using direct current magnetron sputtering, we fabricated [Fe(x)/Pt(x)]n multilayers. 2

For [Fe(x)/Pt(x)]n, when x = 0.5, 1.0, 1.5, 2.0, 2.5 nm, the coercivity is 23.9 kA/m. 0 For n = 40, 20, 13, 10, 8, the coercivity at 350°C is 1120 kA/m. 2

For [Fe(x)/Pt(x)]n, when n = 40, the coercivity at 350°C is 501 kA/m. 0
Structure and Magnetic Properties of Vacuum Annealed Fe/Pt Multilayers

Li Baohe1,2, Hwang Pol1,3, Yang Tao1, Zhai Zhonghai1, and Zhu Fengwu1

(1 Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China)
(2 Department of Mathematics and Physics, Beijing Technology and Business University, Beijing 100037, China)
(3 Department of Physics, Kim Il Sung University, Pyongyang, DPRK)

Abstract: Fe/Pt multilayers and FePt thin films are prepared by DC magnetron sputtering. The as-prepared samples are subjected to vacuum annealing at temperature in the range of 300 to 550°C. The multilayered structure is an effective approach for reducing the ordering temperature of FePt. The ordering parameter S is evaluated to be 0.6 and the coercivity is evaluated to be 501 kA/m in [Fe(1.5 nm)/Pt(1.5 nm)]\textsubscript{10} multilayers at 350°C annealing temperature. This appreciable reduction is correlated with rapid diffusion at the interface of Fe/Pt.

Key words: L1\textsubscript{0}–FePt order phase; magnetron sputtering; ordering parameter; Fe/Pt multilayer

PACC: 7550S; 7570F

* Project supported by the National Natural Science Foundation of China (No. 50301002)

Li Baohe was born in 1972, associate professor. He is engaged in research on magnetic recording media films.

Received 19 October 2004, revised manuscript received 3 December 2004 ©2005 Chinese Institute of Electronics