射频磁控溅射制备 ZnO Ga 透明导电膜及特性*

余旭 $ilde{h}^1$ 马 瑾¹ 计 峰¹ 王玉恒¹ 王翠英² 马洪磊¹

(1山东大学物理与微电子学院,济南 250100)(2泰山医学院物理实验室,泰安 271000)

摘要:采用射频磁控溅射法在玻璃衬底上制备出高质量的镓掺杂氧化锌(ZnO Ga)透明导电膜,并对薄膜的结构 和光电特性以及制备参数对薄膜性能的影响进行了研究.制备的 ZnO Ga 是具有六角纤锌矿结构的多晶薄膜,最佳 择优取向为(002)方向.薄膜的最低电阻率达到了 3.9 ×10⁻⁴ cm,方块电阻约为 4.6 / ,薄膜具有良好的附着 性,在可见光区的平均透过率达到 90 %以上.

关键词:磁控溅射; ZnO Ga; 光电特性 PACC: 6855; 8115C; 7360 中图分类号: TN304.2 文献标识码: A

文章编号: 0253-4177(2005)02-0314-05

1 引言

掺锡氧化铟(ITO)、氧化锡(SnO_2)和氧化锌 (ZnO)是重要的光电子信息材料,在液晶显示、太阳 能电池等光电子器件领域具有广泛的应用.相对于 ITO 和 SnO2 来说, ZnO 薄膜具有价格便宜、在氢气 氛下稳定性高等优点[1,2].对不同方法制备的 ZnO^[3~5]及掺硼(B)、铟(In)特别是铝(Al)的 ZnO 薄膜已进行了比较多的研究[6~10]. 掺镓氧化锌 (ZnO Ga)薄膜已经用化学气相淀积^[11]、离子束辅 助反应淀积^[12]、喷涂高温分解^[13]、脉冲激光淀 积^[14]等方法制备出来,但很少有关于用射频磁控溅 射法制备掺镓氧化锌(ZnO Ga)薄膜的报道. 与 ZnO Al 薄膜相比 ZnO Ga 具有显著的优点: Ga (原子序 数 31) 与 Zn(30) 的原子序数只相差 1.原子半径差 不多,而且 Ga ---O 键与 Zn ---O 键的键长也很接近, 分别为 0.192 和 0.197 nm,因此即使在比较高的掺 杂浓度下, ZnO 的晶格畸变也非常小. 我们采用射 频磁控溅射法在玻璃衬底上制备出高质量的 ZnO Ga透明导电膜,并对薄膜的结构、表面形貌和光电 特性及制备参数对薄膜光电性质的影响进行了研 究.

2 实验

ZnO Ga 薄膜样品是用 JPGF-450 型射频磁控 溅射仪制备的,所用的溅射频率为 13.56MHz.系统 的基础真空度为 8 ×10⁻⁴Pa,靶的直径为 8cm,靶到 衬底的距离为 5.5cm.陶瓷靶是由 ZnO (纯度: 99.99%)和 Ga₂O₃ (纯度:99.999%)粉末经 1200 高温烧结而成,其中 Ga₂O₃ 的重量比为 3%.溅射所 采用的气体是纯度为 99.999%的氩气,衬底为玻 璃.

采用 Rigaku D/ Max- A 型 X 射线衍射仪研究 薄膜样品的结构性质,薄膜的表面形貌是利用 APFM-0190 型原子力显微镜(AFM)在接触模式下 观察的.用 TV1900 双光束紫外可见分光光度计测 量样品的光学透过率.用 -step250R 型台阶仪测量 薄膜的厚度.薄膜的方块电阻在室温下用 SZ-82 型 数字式四探针测试仪测量.霍尔迁移率和载流子浓 度是在室温下由 Van der Pauw 法测量得到.

^{*}国家自然科学基金(批准号:6027044),博士点基金(批准号:20020422056)资助项目

余旭浒 男,1980年出生,硕士研究生,从事微电子学方面的研究.

马 瑾 男,1960年出生,博士,教授,从事微电子学与固体电子学方面的研究和教学工作.

²⁰⁰⁴⁻⁰²⁻²⁸ 收到,2004-04-19 定稿

3 结果与讨论

在 ZnO Ga 薄膜中, Ga 的比例对薄膜的性能有 很大的影响. Hu^[11]等人研究了不同 Zn, Ga 原子比 对薄膜电学性能的影响. 实验结果表明,当镓的掺杂 浓度为 3.0 at. %时,薄膜的电阻率最低,为 4.8 × 10⁻⁴ cm. 在实验中我们取 Ga₂O₃ 的重量比为 3 % (2.7 at. %).

图 1 给出了在不同溅射功率条件下制备的 ZnO Ga 透明导电膜 X 射线衍射谱,溅射功率分别为 75, 100,125,150W. 由衍射图可以看出制备的薄膜为多 晶膜,具有六角纤锌矿结构和(002)方向的单一择优 取向,这与 ZnO AI 透明导电膜的结构是相同 的^[15,16].随着溅射功率的增大,衍射峰强度逐渐增 加,而半高宽没有明显的变化. 薄膜晶粒的大小可以 根据 X 射线衍射谱由 Scherre 公式进行估算^[17]. 通过 公式算得薄膜晶粒在 24~32nm 之间,薄膜的晶粒比 较小,这与 X 射线衍射谱得到的结果是一致的.

图 1 不同溅射功率制备的 ZnO Ga 透明导电膜的 X 射线 衍射谱

Fig. 1 X-ray diffraction spectra for ZnO Ga films as a function of sputtering power

利用原子力显微镜观察到 ZnO Ga 薄膜的表面形貌如图 2 所示.图中给出了溅射功率为 75, 100,125,150W 条件下生长的薄膜的表面形貌.随 着溅射功率的增大,生长速率变快;在溅射时间相同

图 2 不同功率制备的 ZnO Ga 薄膜的原子力显微镜图像(2µm ×2µm) (a) 75W;(b) 100W;(c) 125W;(d) 150W Fig. 2 AFM micrographs for the ZnO Ga films with different sputtering power (a) 75W;(b) 100W;(c) 125W;(d) 150W 316

溅射气压和溅射功率等制备条件对 ZnO Ga 薄膜的特性有较大的影响.图 3 给出了制备 ZnO Ga 薄膜的电阻率随溅射气压强的变化,制备功率为 150W.可以看到薄膜的电阻率随气压的减小而变 小,在 0.5Pa 时薄膜电阻率达到了最低,为 4.9 × 10⁻⁴ cm.这与宋登元等人对 ZnO Al 薄膜的研究 结果是一致的^[18].我们认为溅射气压增大时,离子 之间的碰撞次数增加,溅射出的离子到达衬底的几 率减小,离子的能量减小,键合能力减弱,导致薄膜 晶化程度较差,使薄膜电阻率升高.但是,如果气压 过低,系统起辉就很不稳定,而且溅射速度太快,影 响薄膜的质量,实验中我们选择氯气压为 1Pa.

图 4 给出了 ZnO Ga 透明导电膜的生长速率和 电阻率随溅射功率变化的实验曲线.实验结果表明, 薄膜的生长速率随着溅射功率的增加而单调增大; 薄膜电阻率随着溅射功率的增大而减小,溅射功率 小于 150W 时,电阻率下降的比较明显,但是在溅射 功率大于 150W 时,电阻率下降趋势趋于平缓,在 200W 时电阻率达到最低为 3.9 ×10⁻⁴ cm,方块 电阻为 4.6 / .功率太小时薄膜的电阻率高,而且 膜的附着性也不是很好;溅射功率太大时,虽然薄膜 的电阻率比较低,但是薄膜的生长速率比较快,生长 速度不易控制,而且薄膜的透过率也比较低.受设备 条件限制,实验中我们选择溅射功率以 150W 为宜.

图 5 给出了玻璃衬底上 ZnO Ga 透明导电膜的

载流子浓度 n 和迁移率 µ 随溅射功率变化的实验 曲线. 从图中可以看出,载流子浓度和霍尔迁移率都 随溅射功率的增大而增大. 在溅射功率较小时,制备 的薄膜晶粒较小,会形成较多的晶粒间界,膜的缺陷 比较多,所以薄膜的迁移率和载流子浓度都比较低. 随着溅射功率的增大,制备的薄膜晶粒度增大,晶粒 间界减少,使晶粒间界势垒对载流子的散射下降,同 时薄膜结构趋于完整,掺杂效应更加明显,所以薄膜 的迁移率和载流子浓度增大.

Fig. 5 Hall mobility and carrier concentration as a function of sputtering power for the ZnO Ga films

图 6 为 ZnO Ga 透明导电膜的透射谱,溅射功 率为 150W,溅射气压为 1Pa. 曲线 *a* 是 ZnO Ga 透 明导电膜相对空气的透过率. 薄膜的厚度约为 780nm,在 400~800nm 范围内,样品的平均透过率 约为 80%.曲线 b是扣除玻璃衬底影响后得到的透 过谱,在可见光范围内薄膜的平均透过率达到 90% 以上.根据透射谱吸收边计算出该膜的光学带隙为 3.64eV,大于体材料 ZnO(~3.3eV)薄膜的光学带 隙,这是由 Burstein-Moss 移动引起的^[19].

图 6 薄膜透过率随波长的变化 曲线 a:相对透过率;曲线 b:绝对透过率

Fig. 6 Transmittance of the film as a function of wavelength Curve a:Relative transmittance;Curve b: Absolute transmittance

4 结论

采用射频磁控溅射法在玻璃衬底上淀积出高质 量的 ZnO Ga 透明导电膜. 制备出的薄膜为多晶膜, 具有六角纤锌矿结构和垂直于衬底的(002)方向的 择优取向. 薄膜在可见光区的透过率超过 90 %,最 低电阻率为 3.9 ×10⁻⁴ cm. 薄膜的电阻率随溅射 功率的增大而减小,电阻率的减小主要是由于载流 子浓度和霍尔迁移率的增大引起的. 薄膜的附着性 好,不易脱落.

参考文献

- [1] Minami T, Sonohara H, Takata S, et al. Highly transparent and conductive zinc stannate thin films prepared by RF magnetron sputtering. Jpn J Appl Phys, 1994, 33 :L1693
- [2] Siener I, Wanderka N, Urban I, et al. Electron microscopic characterization of reactively sputtered ZnO films with different Aldoping levels. Thin Solid Films, 1998, 330:108
- [3] Ye Zhizhen, Chen Hanhong, Liu Rong, et al. Structure and PL spectrum of ZnO films prepared by DC reactive magnetron sputtering. Chinese Journal of Semiconductors, 2001, 22(8):1015 (in

Chinese) [叶志镇,陈汉鸿,刘榕,等. 直流磁控溅射 ZnO 薄膜的结构和室温 PL 谱.半导体学报,2001,22(8):1015]

- [4] L üJianguo, Ye Zhizhen ,Zhang Yinzhu, et al. ZnO films synthesized by solid-source chemical vapor deposition with c-axis parallel to substrate. Chinese Journal of Semiconductors, 2003, 24 (1):1
- [5] Wang Qingpu, Zhang Deheng, Xue Zhongying. Photoluminescence of ZnO films deposited on Si substrate by RF magnetron sputtering. Chinese Journal of Semiconductors, 2003, 24(2):157 (in Chinese) [王卿璞,张德恒,薛忠营. 射频磁控溅射 ZnO 薄 膜的光致发光.半导体学报, 2003, 24(2):157]
- [6] Minami T, Sato H, Nanto H, et al. Group impurity doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn J Appl Phys, 1985, 24:L781
- [7] Wang Anchuan, Dai Jiyan, Cheng Jizhi, et al. Charge transport, optical transparency, microstructure, and processing relation in transparent conductive indium-zinc oxide films grown by lowpressure metal-organic chemical vapor deposition. Appl Phys Lett, 1998, 73 (3):32
- [8] Jimenez-Gonzalez A E, Soto Urneta J A. Optical transmittance and photoconductivity studies on ZnO Al thin films prepared by the sol-gel technique. Solar Energy Materials and Solar Cells, 1998, 52:345
- [9] Ma Jin ,Ji Feng ,Zhang Deheng ,et al. Optical and electronic properties of transparent conducting ZnO and ZnO Al films prepared by evaporating method. Thin Solid Films ,1999 ,347:1
- [10] Huang Shulai, Ma Jin, Liu Xiaomei, et al. Preparation and properties of conducting transparent ZnO-SnO₂ films deposited at room temperature. Chinese Journal of Semiconductors, 2004, 25
 (1):56(in Chinese)[黄树来,马瑾,刘晓梅,等. ZnO-SnO₂ 透 明导电膜的低温制备及性质.半导体学报, 2004, 25(1):56]
- [11] Hu J H, Gordon R G. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water and triethyl gallium.J Appl Phys, 1992, 72:5381
- [12] Zhang D H,Brodie D E. Transparent conducting ZnO films deposited by ion-beam-assisted reactive deposition. Thin Solid Films, 1992, 213:109
- [13] Tiburcio-Silver A, Sanchez-Juarez A, Avilar Garcia A. Properties of gallium-doped ZnO deposited onto glass by spray pyrolysis. Solar Energy Materials and Solar Cells, 1998, 55:3
- [14] Hirata G A, McKittrick J, Cheeks T, et al. Synthesis and optoelectronic characterization of gallium doped zinc oxide transparent electrodes. Thin Solid Films, 1996, 288:29
- [15] Hao Xiaotao ,Ma Jin ,Zhang Deheng ,et al. Thickness dependence of structural ,optical and electrical properties of ZnO Al films prepared on flexible substrates. Appl Surf Sci ,2001 ,183 :137
- [16] Minami T, Oohashi K, Takata S, et al. Preparations of ZnO Al transparent conducting films by DC magnetron sputtering. Thin Solid Films, 1990, 193/194:721
- [17] Minami T, Nanto H, Shooh S, et al. The stability of zinc oxide transparent electrodes fabricated by RF magnetron sputtering.

Thin Solid Films ,1984 ,111 :167

[18] Song Dengyuan, Wang Yongqing, Sun Rongxiao, et al. Effect of Ar pressure on properties of ZnO Al films prepared by RF magnetron sputtering. Chinese Journal of Semiconductors, 2002, 23 (10):1078(in Chinese)[宋登元,王永青,孙荣霞,等. Ar 气压 对射频磁控溅射铝掺杂 ZnO 薄膜特性的影响.半导体学报, 2002,23(10):1078]

[19] Burstein E. Anomalous optical absorption limit in InSb. Phys Rev ,1954 ,93:632

Properties of Transparent Conducting ZnO Ga Films Prepared by RF Magnetron Sputtering *

Yu Xuhu¹, Ma Jin¹, Ji Feng¹, Wang Yuheng¹, Wang Cuiying², and Ma Honglei¹

(1 School of Physica and Microelectronics, Shandong University, Ji 'nan 250100, China)
 (2 Laboratory of Physics, Taishan Medical University, Tai 'an 271000, China)

Abstract : Callium doped zinc oxide (ZnO Ga) films were prepared on glass substrates by RF magnetron sputtering at room temperature. The structural ,electrical ,and optical properties of the ZnO Ga films were investigated in terms of the preparation conditions. The obtained films are polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction in the ZnO grains. The transmittance of the ZnO Ga films in the visible range is over 90 %. The lowest resistivity of 3.9 ×10⁻⁴ cm and the lowest sheet resistance of 4.6 / are obtained for these ZnO Ga films.

Key words: magnetron sputtering; ZnO Ga films; electrical and optical properties PACC: 6855; 8115C; 7360 Article ID: 0253-4177(2005)02-0314-05

^{*} Project supported by National Natural Science Foundation of China (No. 6027044) and Specialized Research Fund for the Doctoral Program of High Education (No. 20020422056)

Yu Xuhu male, was born in 1980, master candidate. He is engaged in the research on microelectronics.

Ma Jin male, was born in 1960, PhD, professor. He is engaged in the research and teaching on microelectronics and solid state electronics.

Received 28 February 2004 ,revised manuscript received 19 April 2004