掺氮类金刚石薄膜的电化学 $C-V$ 研究

程 翔¹ 陈 朝¹ 徐富春¹ 刘铁林²

(1 厦门大学物理系，厦门 361005)
(2 深圳市纳米材料技术研究所，深圳 518048)

摘要：采用射频等离子体增强化学气相沉积 (RF-PECVD) 法制备 DLC：N 薄膜，制备掺氮的类金刚石薄膜。将不同掺氮量制备的 DLC：N 薄膜进行电化学 $C-V$ 测量，$I-V$ 和 $C-V$ 曲线表明，不论是采用 N² 或是 NH₃ 进行掺氮都得到 n 型的 DLC 薄膜，掺 N² 的样品载流子浓度能达到更高。根据样品的电化学 $C-V$ 测量结果并结合 X 射线光电子能谱，详细研究了 DLC：N 薄膜载流子浓度的纵向分布。发现在靠近薄膜与衬底界面处附近即生长初期 N 的掺杂浓度分布较高。

关键词：掺氮类金刚石薄膜；电化学 $C-V$；X 射线光电子能谱

PACC：7350N；7280N；8280F

1 引言

类金刚石 (DLC) 薄膜是一种新型功能材料，主要以碳氢化合物为原料，在低温低压下形成的碳薄膜。DLC 薄膜由于与金刚石有相似的力学、光学和电学特性而备受关注。DLC 薄膜的生长、光学性质和机械性质等已经比较被人们了解，并在很多领域得到应用，如抗磨擦表层、散热涂层和光学射镜等。但 DLC 薄膜的电学性质及其应用尚处于研究探讨阶段。对 DLC 薄膜掺氮以改变其导电特性，拓展它作为一种新型半导体材料在光电方面的应用是近年来的研究热点。Meyerson 和 Jones 等人的研究表明，在 DLC 薄膜中掺入硼、磷和氮是可能的。硼的成功掺入形成 p 型 DLC 薄膜已被众多研究者证实，然而对于氮的有效掺杂和掺氮机理仍有待于进一步探讨。 本文用射频等离子体增强化学气相沉积 (RF-PECVD) 法，将 N² 或是 NH₃ 制备了掺氮的 DLC (DLC：N) 薄膜，并对不同掺氮方法得到的 DLC 薄膜进行电化学 $C-V$ 测量分析。电化学 $C-V$ 方法是研究半导体材料中载流子浓度纵向分布的有效手段。这种方法利用电解液与半导体形成的 Schottky 势垒代替金属-半导体势垒。通过耗尽层的 $C-V$ 关系计算半导体在不同深度处的载流子浓度，从而获得半导体材料中载流子浓度的纵向分布。对于新型半导体材料 DLC 薄膜，在没有明确金属与之接触性质前，采用电化学 $C-V$ 方法来测量薄膜的有效掺杂和掺氮浓度的纵向分布是一种有效手段。

2 实验

采用平行板式 RF-PECVD 制备 DLC：N 薄膜，射频频率为 13.56MHz。实验中所用的衬底材料为 n 型 Si 单晶片（电阻率 $\sim 0.01 \Omega \cdot cm$），衬底表面清洗处理后，放入真空室内通入 Ar 气进行等离子体辉光放电处理，真空室的本底真空为 0.1Pa 左右。反应气体分为两种混合气体，一种是 CH₄ 和 N₂ 的混合气体，一种为 CH₄ 和 NH₃ 的混合气体。输出射频电压为 1300～1600V，加阴极电流为 100mA，栅极电流为 20mA。在衬底温度为室温下进行辉光放电反应，通过改变辉光时间得到不同厚度
的系列样品，在进行X射线光电子能谱(XPS)测量同时得到样品厚度，其中携带N：进行掺杂的样品1#沉积厚度约为210nm，样品2#厚度约为20nm；通过携带NH3进行掺杂的样品3#沉积厚度约为160nm，样品4#厚度约为20nm。通过Raman谱、红外反射谱和XPS对未掺氮的薄膜样品进行微结构分析，各特征峰表明薄膜样品是含有不同比例的sp^3 C和sp^2 C的DLC薄膜。作者在其它文章[1,5]已有陈述，这里就不再重复。

利用Bio-Rad公司的PN4000C电化学C-V测试仪检测样品的载流子浓度纵向分布。NaOH：EDTA电解液作为一个电极，金属丝加在DLC：N薄膜表面形成前接触作为另一电极。由于DLC薄膜的化学稳定性，暂时还没有找到一种电解液能将样品表面腐蚀，只能通过测量计算薄膜/NaOH：EDTA电解液界面形成的Schottky势垒电容和电压的关系，来获得载流子浓度的纵向分布。

XPS是在美国PHI Quantum2000能谱仪上进行，分析室压力5×10^-7Pa，选用Al Kα(1486.6eV)为激发源，能量分析器的能为23.5eV。在分析室中，利用氩离子枪，对样品进行原位刻蚀。

3 结果和讨论

样品测试时的装置如图1所示。测试中DLC：N薄膜与电解液形成Schottky势垒，两个电极分别接于NaOH：EDTA电解液和样品薄膜处，在I-V和C-V曲线上负压方向为Schottky势垒的正向偏置，而正压电压为反向偏置。

选择合适的测量电压范围和限制电流进行I-V测量，图2给出了DLC：N薄膜/NaOH：EDTA电解液的I-V特性曲线。由这样的I-V特性可以判断DLC薄膜的导电类型为n型。实验方法各不相同，较为明显的是不同厚度样品1#、3#和2#、4#的反向电压不同。在一个样品/电解液系统中，样品的掺杂浓度不同。正向偏置电压基本不变，反向击穿电压则随着样品的载流子浓度不同而变化，沉积时间较久的1#和3#的反向击穿电压约为10V，2#和4#的反向击穿电压为3#和1#小，由此可以初步认为1#、3#的掺杂浓度比2#、4#的低。说明薄膜沉积时间的长短影响掺杂浓度，即在薄膜生长初期的N掺杂更有效。随着薄膜厚度的增加，N的有效掺杂降低，其中可能的原因在下文中讨论。

![Figure 1](attachment:image1.png)

图1：样品测试时的装置示意图

![Figure 2](attachment:image2.png)

图2：DLC：N薄膜/NaOH：EDTA电解液的I-V曲线

选择合适的测量电压范围和限制电流，对样品施加频率为3.0kHz的交频信号，改变样品的反向偏压，测量DLC：N薄膜/NaOH：EDTA电解液C-V特性。图3是3#样品的C-V特性曲线，此C-V曲线图的均值值也验证所测样品的导电类型为n型。

电化学测试C-V有三种模式：并联模式和串联模式。因为改变交流信号的频率，三种模式曲线会更加接近，所以采用串联模式进行分析。样品在反向偏压下，薄膜/电解液界面形成了仅由电离施主组成的空间电荷层，随着偏压的加大，耗尽层边界往薄膜内层扩展。耗尽条件下的能带图和Robertson等人研究的DLC与金属Schottky接触能带图相似，如图4所示，交频信号只使电离施主在空间电荷区的边缘发生变化。

电容C与偏压V，耗尽层宽度X的表达式如下：
图 5 1# 和 3# 样品 N_d-X_d 曲线

Fig. 5 N_d of samples 1 and 3, depending on X_d

根据样品 N_d 和 X_d 的关系，我们得出以下结论。当薄膜厚度增加时，N_d 逐渐增大，而 X_d 逐渐减小。这表明薄膜的掺杂浓度和电荷密度之间存在一定的关系。通过实验数据的分析，我们可以进一步研究薄膜的物理性质及其在各种应用中的表现。
能达到的有效掺杂也相应更高。

4 结论

用平行板式 RF-PECVD 制备了掺氮 DLC 薄膜系列，利用电化学 C-V 测试仪检测样品的载流子浓度纵向分布。I-V 和 C-V 曲线表明，无论是采用 N2 或是 NH3 进行掺杂都得到 n 型的 DLC 薄膜，掺 NH3 的样品载流子浓度较高，达到 10^{19} \text{cm}^{-3}。N 掺杂浓度在 DLC：N 薄膜与衬底界面处附近较高，随着薄膜的增厚，浓度接近平衡，而在接近薄膜/电极接触面又略有增大。

参考文献

Analysis of Nitrogen-Doped Diamond-Like Carbon Films by Electrochemical C-V Method

Cheng Xiang¹, Chen Chao¹, Xu Fuchun¹ and Liu Tielin²

(¹ Department of Physics, Xiamen University, Xiamen 361005, China)
(² Institute of Nano Materials and Technology, Shenzhen 518048, China)

Abstract: Nitrogen-doped diamond-like carbon films are deposited by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD). The electrochemical capacitance-voltage (C-V) profiler is used to study the effect of doping nitrogen on diamond-like carbon films by two kinds of different source gases including nitrogen. With the analysis of the electrochemical C-V profile and the current-voltage (I-V) characteristics curve, the n-type diamond-like carbon films can be obtained by either N₂ or NH₃ doped. The density of carriers in the samples doped by NH₃ is higher up to 10¹⁹ cm⁻³. With the electrochemical C-V and the X-ray photoelectron spectra (XPS), it is discussed that the density longitudinal distribution of carriers in the DLC:N films with the depth. The peak of N-doped concentration distribution is at the DLC:N films-substrate interface, the growth initial stages.

Key words: N-doped diamond-like carbon film; electrochemical capacitance-voltage; X-ray photoelectron spectra

PACC: 7360N; 7280N; 8280F

Cheng Xiang, female, was born in 1977, PhD candidate. She is engaged in the research on wide gap semiconductor thin film materials and devices.

Chen Chao, male, was born in 1943, professor, advisor of PhD candidates. He is engaged in the research on semiconductor thin film materials and devices.

Received 27 October 2003, revised manuscript received 14 January 2004 © 2004 The Chinese Institute of Electronics