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Abstract : For the treatment of the quantum effect of charge distribution in nanoscale MOSFETs,a quantum cor-
rection model using L evenberg-Marquardt back-propagation neural networks is presented that can predict the
guantum density from the classical density. The training speed and accuracy of neural networks with different hid-
den layers and numbers of neurons are studied. We conclude that high training speed and accuracy can be obtai ned
using neural networks with two hidden layers,but the number of neuronsin the hidden layers does not have a no-
ticeable effect. For single and double-gate nanoscale MOSFETSs, our model can easily predict the quantum charge
density in the silicon layer ,and it agrees closely with the Schrodinger- Poisson approach.
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1 Introduction

With advances in ULSI, MOSFETs are
shrinking to the nanoscale regime ,in which the di-
mensions are close to the De Broglie wavelength of
the charge carriers. Quantum effects are evident ,
and the inverson layer charge carriers shift away
from the S0/ S interface'"” —ffects which
must be congdered in device modeling and s mula
tion. The Schrodinger- Poisson equations with ap-
propriate boundary conditions can be applied to
study such quantum effects®* but thisis a time
consuming task in practice. In this paper ,a back-
propagation neural network (BP NN) is applied to
construct a predictive model for the quantum cor-
rection of nanoscale MOSFETs that can predict the
quantum charge density from the classcal densty.
Though the standard gradient descent algorithm
for BP NNs provides an easy learning method,it
has three obvious drawbacks® . First ,it might con-
verge to some loca minimum. Second, initial
weights and biases influence the learning speed.
Third ,it converges very sowly when the output is
close to one. In this investigation ,the output (the
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ratio of the quantum charge density to the classical
density) isclose to one when the point isfar away
from the SO/ S interface. The Levenberg-Mar-
quardt algorithm is used to avoid these draw-
backs® .

2 Quantum correction model

Asillustrated in Fig. 1,the NN output layer
has one neuron whose output denotes the ratio of
quantum to classical charge density. The neuronsin
the input layer denote parameters such as oxide
thickness,slicon layer thickness,gate voltage,and
doping level and depth (distance from the 90:/ S
interface) ,which determine the charge density rati-
0. There are some intermediate layers ,called hidden
layers (first layer and second layer shown in Fig.
1).

The neuronsin theinput layer receive external
inputs,and their weighted sums are transerred to
the neuronsin the first hidden layer. The input n"
of neuron i in hidden layer mis

n"=wha" ' +whalt+ +w gt agh't + bl
(1)

L&', ,and ag1 are the outputs of

where ai" *, &
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Fig.1 NN structure

the neuronsin hidden layer m- 1,S™ *isthe num-
ber of neurons in hidden layer m- 1,w; is the
weight between neuron j in hidden layer m- 1 and
neuron i in hidden layer m,and k" is the bias of
neuron i in hidden layer m. The output a" of neu-
ron i in hidden layer mis

a" = f"(n") =2 (1L+exp(- 2n™)) - 1 (2)
where ™ is the activation function.

The outputs a', &', ,as of the neuronsin
hidden layer m are tranderred to the neurons in
hidden layer m+ 1 ,and their weighted sums act as
the inputs. The weighted sum of the outputs of
neuronsin thelast hidden layer actsastheinput to
the neuronin the output layer. The activation func-
tion £° of the neuron in the output layer takes a
linear form.

The network modeling capability is specified
by the mean square error (MSE) of the output in
the output layer as

Q Q
(tq - aq)2 ezq
“ZQ— = ;Q— (3

where Qis the number of training vectors, and tq,
ay ,and e, are the expected output ,computed out-
put ,and the error for training vector q,respective-

ly.

MSE =

In order to obtain the expected output for any
external inputs,NNs need to be trained many times
using several training vectors conssting of inputs
and the corresponding outputs to determine the
weights wi; and biases b" corresponding to the
highest prediction accuracy.

In the training process,the weight and bias
vector x is adjusted by
A xi =- (37 (x) I(xk) +Hul) FIT(xk) e(xx)
(4)
where k is the iteration number ,J is the Jacobian
matrix of the error vector eto weight and bias vec-
tor x,l isa unit matrix ,andM is a scalar quantity
used for controlling the search direction and step.
e,x,and J are givenin Egs. (5 7) ,regpectively.
e’ = [er e eo] (5)
X' = [x1 X2  Xnl
= [wii wli, wg bt ba wii b'] (6)
Here Risthe number of neuronsin the input lay-
er ,M denotes the output layer ,and bt is the bias of
the neuron in the output layer.

Oer  _der _der der Oer
owii owlp. owst . Obi ob
Oe _Jde Ol Jde Oder
J(x) = owi: Owl: awélvR obt obt
Oeq _deq _Odeq  Odeq Jdeg
Owii Owip owg . Obi obY’
(7)

The elements of J are computed by Egs. (8)
and (9).

0 0 —m m- .
[J]na :a_illl = a\?VImJ = Ui,n X aj,ql, for weight x;
(8)
[3]n = %“ = %}‘ﬁf = uM, for bias xi
| i
(9
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Here TJi”,‘h is determined by Eq. (12) .

Ug =- F"(nq) (10)
_Uan - 'F_(nan)_(wm+1) TU_qm+1 (11)
u™ = [u"| Ul | UQ] (12)

3 Training and optimizing NNs

The training speed and prediction accuracy of
NNs depend on the number of hidden layers and
the number of neurons in the hidden layers. NNs
with high training speed and prediction accuracy
can be obtained through training and optimization
with many training vectors,including the ratio of
quantum charge dendty to classcal charge density.
The training vectors can be obtained by solving the
coupled Schrodinger-Poisson equations  self-con-
sstently for MOSFETs with a variety of oxide
thicknesses, slicon layer thicknesses, doping lev-
els,and applied gate voltages.

When solving the coupled Schraodinger- Poi sson
equations,they must be discretized by the finite
difference method first. Then the Poisson equation
is solved to obtain the classical potential distribu-
tion by an iterative method. The potential is used
to solve the Schrodinger equation along the direc
tion vertical to the gate’® ' . The new charge den-
sty can be calculated with wavef unctions and ener-
gy levels obtained from the Schrodinger equation.
The new charge density isplugged into the Poisson
equation to slve the new potentia. The
Schrodinger equation is solved again with the new
potential. These steps are repeated iteratively until

the convergence criterion is met™ *I.

The oxide thickness of MOSFETs used for
training and optimizing NNs variesfrom 1 to 5nm,
the dlicon layer thickness variesfrom 3 to 100nm,
the applied gate voltage rangesfrom 0. 5to 1 5V,
and the doping concentration variesfrom 1 x 10* to
5 x 10® cm™®. The ratio of quantum to classical
charge dendties at any depth in the slicon layers of
MOSFETSs is calculated by solving the coupled
Schrodinger- Poisson equations.

The charge dendty of single gate MOSFETSs
in the silicon layer varies with oxide thickness,sli-
con layer thickness,gate voltage ,depth ,and doping
level. The ratio isa o afunction of thefive param-
eters. Therefore ,the input layer of the NNsfor sn-
gle gate MOSFETSs has five neurons,representing
the five parameters. Because the value and varying
scope of doping concentration are very large,the
logarithm of doping concentration is used in train-
ing vectors.

The computer used to train and optimize NN's
isequipped with a Pentium 2 2G CPU ,512M menr
ory ,and 80G of disk space.

First , NNs with one hidden layer containing
different numbers of neurons were built and
trained ,in which the stopping criterion for MSE
was 10" ° ,and the maximum epoch was 1000. The
training curves are shown in Fig. 2(a). The num-
bers at the upper right hand corner of thefigure re-
present the number of neuronsin the hidden layer.
It can be seen that the M SE of the NNs with only
one hidden layer is larger than 10" *.
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Fig.2 Training curves with different hidden layers (a) NN with one hidden layer ; (b) NN with two hidden layers;

(c) NN with three hidden layers

Then NNs with two hidden layers contai ning
different numbers of neurons were constructed and
trained ,in which the criteriafor the M SE and max-
imum epoch were the same as above. The training

curves are shown in Fig.2(b) . The numbers at the
upper right hand corner of the figure are the num-
ber of neuronsin the first and second hidden lay-
ers,respectively. It can be seen that the M SEs of all
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the NNs meet the specified stopping criterion of
10"° before the maximum epoch of 1000 is
reached. Consdering the influence of the random
initial weights and biases,it can be concluded that
the number of neuronsin the hidden layers has no
evident effect on the training accuracy and speed.

At last ,NNs with three hidden layers were set
up and trained. There were seven and three neu-
ronsin the first and second hidden layers,respec-
tively ,but the number of neuronsin the third hid-
den layer was different. The criteria for MSE and
the maximum epoch were the same as above. The
training curves are plotted in Fig. 2(c) ,in which
the numbers at the upper right hand corner of the
figure are the number of neuronsin the third hid-
den layer. It can be seen that the MSE of the NN
with seven neurons in the third hidden layer does
not converge to the stopping criterion of 10°°. In
addition ,the average training time of NNs with
three hidden layers per epoch is 0. 057 ,while the
corresponding time of NNs with two hidden layers
isonly 0. 024.

Thus NNs with two hidden layers should be
used to obtain high training speed and prediction
accuracy.

The electron densities obtained by a trained
NN with two hidden layers and Schrodinger- Pois
son (SP) approach for two single gate NMOSFETSs
against depth are shown in Fig.3(a). The NN has
seven and three neuronsin thefirst and second hid-
den layers, regpectively. The doping level of the
two MOSFETsis Na = 10" cm™® ,the applied gate
voltage is 1 5V ,and the oxide thicknesses are 1
and 3nm ,respectively. The average relative differ-
ences between the dendties by the two methodsfor
the two MOSFETSs are 0. 4% and 0. 3%, respec
tively.

For two-gate MOSFETs ,theinput layer of the
NN s should have one more neuron representing the
second gate voltage. The NNs were trained in the
same way as the single gate MOSFETSs. It is a0
found that high training speed and accuracy could
be achieved by NNswith two hidden layers ,and the
number of neuronsin the hidden layers has no evident
effect. The dectron dendties obtained by a traned NN
with two hidden layers and Schrodinger- Poison gp-
proach for a two-gate NMOSFET against depth are
shownin Fg. 3(b) ,in which the doping level Na is
10" cm® ,the oxide thickness of both gatesis 1nm the

gpplied voltages for the front and back gates are 1 5
and 1V ,regectively ,and the dlicon thicknessis 5nm.
The average reative difference between the eectron
dendties by the two methodsisQ 5 %.
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Fig.3 Hectron density by NNs and SP approaches a
gainst depth (a) Sngle gate; (b) Double gate

The capacitancesof a2 m x 2 m nMOS capadi-
tor with a 1 6nm-thick oxide,obtaned by the two
methods are presented in FHg. 4. The average rdative
diff erence between the capacitancesis Q 5 %.
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4 Conclusion
) [6]
BP NNs using the L evenberg-Marquardt al go-
rithm can be used to construct a predictive model
for the quantum charge densty of MOSFETSs. .,
High training speed and prediction accuracy can be (7l
obtained usng the NNswith two hidden layers,but [8]
the number of neuronsin the hidden layers has no
evident effect. Our model can predict the quantum
o - . [9]
charge densties in the dlicon layer of sngle and
double-gate MOSFETs in very good agreement
with Schrodinger- Poi sson equations. The model can [10]
be used in nanoscale MOSFET modeling and s mu-
lation.
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