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Abdtract : We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved
algorithm is used to extract model parameters of SOl MOSFETs, which are fabricated with standard 1 2/ m
CMOS/ SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The
simulation results using this model are in excellent agreement with experimental results. The precision is improved
noticeably compared to commercia software. This method requires neither a deeper understanding of SOl MOSFETs
model nor more complex computations than conventional algorithms used by commercia software. Comprehensive verifi-
cation shows that this model is applicable to a very large range of device sizes.
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1 Introduction

Slicon on insulator (SOI) technology' is a
promisng technology that may replace bulk slicon
CMOS technology. It has great advantages over
bulk slicon, such as high speed,low power con-
sumption, and freedom of latch-up. SOl device
modeling is the bridge that links VL SI desgn and
manufacturing. Many SOl models have been pro-
posed in recent years? ®. The BSIM SOI"® model
has become the industry standard because it is
based on the physcal mechanisms of SOl devices
and it has passed the verification of the (CMC
compact model council) . But model parameter ex-
traction for SOl MOSFETs is more difficult than
for conventional bulk slicon MOSFETS because of
more complex physical phenomena such as the
floating body effect. The difficulty of extracting
model parametersfor SOl MOSFETsin the indus
try hasinfluenced the application of integrated cir-
cuit desgn based on SOI technology.

Model parameters are usually extracted by
commercial software'” such as ICCAP,UTMOST,
and BSIM Pro. Because al of the model equations
are nonrlinear ,a combination of least square and
Newton-Raphsoniteration isoften adopted. Besdes
these ,other norrlinear fitting methods may be a
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dopted such as the GaussNewton and Marquardt
methods. These methods require the smplification
of model equations and complex computations such
as the gradient and inverse Hessan matrix. Such
commercial software istherefore often very expen-
dve and does not effectively extract SOl MOSFET
model parameters. Analytica methods are proposed
in Refs. [8,9] that can extract afew given parame-
ters,but they are not practical for the extraction of
a full model card, egecialy for complex models
such asBSIM3V3 and BSIM SOI. In 1999 ,Watts et
al.at IBM proposed a method based on genetic al-
gorithm™ for which 51 parameters of BSIM3 can
be extracted at one time using global optimization.
Unfortunately ,they present no model verification
in their report. Evidently ,a long time is needed to
obtain the optimal solutionfrom a variable space of
51 dimensons,particularly since these parameters
must fit many device dimensons.

In this paper,a novel method for extracting
SOl model parameters is proposed. It is based on
the combination of a genetic algorithm (GA) and a
smulated annealing algorithm (SA). It is more
practical than conventional and analytical methods,
and it can be easlly applied to new technology and
other device models such as bulk dlicon MOS
FETs,diodes,and BJ Ts.

(C2006 Chinese Institute of Electronics
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2 Compound genetic algorithm

Genetic algorithm™! is an intelligence optimi-
zation algorithm that smulates natural biological e
volution. It starts from a population of many indi-
vidual s ,each of which represents a possible solu-
tion. As a global optimization algorithm ,genetic al-
gorithm is applied in many fields,such as auto con-
trol and function optimization. It can find the re
gion of probable solutions quickly because of itsin-
herent parallel-computation mechanisms. Howev-
er ,it can eadly yield premature solutions. Further-
more it has poor mountain-climbing ability. After
the region of the optimal solutionisfound ,a genet-
ic algorithm takes along time to find thefinal solu-
tion. The smulated annealing algorithm!™! ,on the
other hand,has strong mountain-climbing ability.
Also ,it can accept a worse solution according to
the Metropolis principle,enabling it to escape the
trap of local optimization. Thusit hasthe capability
of global optimization. The disadvantage of SA is
its low efficiency and high time consumption.

The compound genetic algorithm proposed in
this paper has the advantages of both GA and SA.
It is a combination of two different solution search
mechanisms. It can perform global optimization
through population evol ution and local optimization
through the mountain-climbing ability of SA.

Model equation

3 SOl mode parameter extraction

3.1 Local optimization

The extraction of parametersis based on local
optimization. Itsflow is presented in Fig. 1. Before
the model parameter extraction of step 1 ,theinitial
parameter set P, ,which can be chosen according to
the BSIM SOI user’ s manual ,is produced. The pa
rameter set P are the parameters targeted for ex-
tractionin step 1. The values of the other parame-
tersof the model card take their default values. P
is produced after step 1 is finished through the
compound GA. Measurement data set 1 and model
equations are used. P: is the set of parameters tar-
geted for extraction in step 2. In this step, P. is
fixed at the values extracted in step 1. Measure-
ment data set 2 and model equations are used.
These steps are repeated until all the model param-
eters have been extracted. In each step ,a parameter
set Piisextracted ,and it cannot be modified in fol-
lowing steps. Theindex* i” istheindex of the opti-
mization step.

The key point in model parameter extractionis
the definition of the strategy in each step. Table 1
shows some local optimization steps used in this
paper ,which are defined based on a physical under-
standing of the BSIM SOI model and local optimi-
zation.

i

Data set 1
Optimization |Data set 2| Optimization Datasetn | Optimization
| stepl "l step2 - > step n
P Pl Pn—l Pn
e —— | > . ————p] ——

Fg.1 Model parameter extraction strategy

Table 1 Some local optimization stepsin BSIM SOl model parameter extraction

Parameters to be extracted and target data set

Devices and measurement data set

Vio ,Uo,Ua,Ub;
Target data: oV gcurve at different Vs

Devices with large W and L ;
IV g curves(Vas =0 05V ,Vps =0V)

K1, K2,Uc;
Target data: Ip-V g curve at different Vs

Devices with large W and L ;
IV g curves(Vas =0 05V ,different Vs)

N factor ,Vi ;
Target data: oV gcurve at Vps=0

Devices with large W and L ;
IV gcurves(Vas =0 05V)

Vs, Kot , Kp3 ;
Target data: IV gcurve at different Vs

Devices with large W and L ;
IV g curves(Vas =0 05V ,different Vs)
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3.2 Optimization strategy

A chart of the optimization module is presen-
tedin Fig.2.

[ Initial population and cooling schedule }

»
!
Fitness computation

!

GA operation

l._i‘

Temperature
lowered

SA of optimal individual

Satisfied with error?

( Output final solution ]

Fig.2 Optimization procedure usng compound GA

(1) Aninitial population is produced at ran-
dom. A large enough number of individuals should
be chosen to prevent a premature solution. In this
work the number of individuals used is 50. Every
individual represents a possible set of model pa
rameters,and every parameter to be extracted is
confined within a reasonable boundary defined in
advance. Snce the SA operation is sensitive to the
cooling schedule ,it must be defined carefully. The
cooling schedule is comprised of four parameters:
the initial temperature val ue t ,the differential step
dt that controls temperature decline ,a stop criteri-
on parameter s,and the Mapkob chain length I.

(2) The GA fitness of each individual is comr
puted. The fitnessis actually the negative value of
the objective function. Thus,the smaller the value
of the objective function ,the bigger thefitness,and
the more likely it is that the corresponding individ-
ual will be selected.

(3) Genetic operations such as selection, re-
production ,crossover ,and mutation are performed
according to thefitness value of eachindividual. An
individual with greater fitnessis more likely to be

selected and reproduced. Its genetic information is
propagated to its off pring through the selection,
reproduction ,and crossover operations. Mutationis
an important part of the GA operation that pre
serves the diverdsty of the population and prevents
premature termination. The mutation operator is u-
sually a very small number.

(4) Then the SA actson the fittest individual
of the new population ater the genetic operations.
In order to achieve quas-equilibrium at every tem-
perature ,the Mapkob chain must be long,and the
corresponding computation time will be long as
well. Computation time of the SA is sacrificed to
reduce model error of the GA. The SA can be
turned on when the error of the optimal solutionis
less than a val ue defined in advance. During the SA
operation ,the new solution will be accepted accord-
ing to the Metropolis rule:

1, () = (i)

F(Q) - £00)

P(i =) = exp
t 1

otherwise

(1)
Here tis the current temperature,i represents the
current solution,j represents the new solution ,and
Pis the probability that the solution will transer
from the current solution to the new solution. E
guation (1) shows that a worse solution than the
optimal solution may be accepted according to a
given probability ,which allows the SA to escape
the trap of locally optimal solutions. Thisis a key
difference between SA and the local searching al go-
rithm.

(5) Whether quas-equilibrium is achieved at
each temperature depends on the criterion that no
new solution has been produced in consecutive
Mapkob chainsof length |I. The number of Mapkob
chains is defined by s. If this criterion is met ,the
algorithm advances to the next step. If not it re
turns to the former step. In this work ,l islong e
nough that scan be taken as unity.

(6) Whether the optimal solution meets the
error requirement is determined in this step. If the
solution meets the error requirement ,it isoutput as
the final solution;If it does not meet the error re-
quirement ,the current SA temperature is lowered
and we return to step (2). The solution obtained
from the SA operation is treated as a member of
the GA population.

Binary coding is often used during the GA op-
eration. Anindividual iscomposed of a string of bi-
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nary numbers. When usng binary coding,the GA
operation is Smple ,and crossover and mutation are
eadsly performed. However ,complexity of compu-
tation and low €ficiency arise because the conver-
son between binary and point numbers is often
performed. The converson is performed according
to the equation

X = a+_2b"_-_aikZ(x(k) x 27) (2
where ais the lower limit of the variable,bis the
upper limit of the variable ,and x™ isthe kth bina
ry code of the binary string. The equation illus
trates that the variable value is not consecutive.
The difference between two adjacent variablesisin
the length of their binary strings. If the binary
string istoo short ,the solution will be very inaccu-
rate. If the binary string is too long ,the efficiency
of the computation will suffer.

We adopt floating-point coding in the proce
dure of mapping from phenotype to genotype to en-
sure the solution precison and efficiency. The
floating-point code directly corresponds to the vari-
able. This approach has great advantages such as
computation smplicity and high efficiency because
it needs not convert between different codings.

Before beginning the model parameter extrac
tion ,the following process parameters must be de-
fined as shown in Table 2. These parameters are
fixed at their measured val ues during model param-
eter extraction.

mature as it is now ,device models had fewer pa
rameters,and device geometry had little effect on
device models. This type of model is called a point
model. It is no longer practical because it cannot
extract parameters related to short the channel
effect and narrow channel effect. Today ,group de-
vice extractionisoften used in model parameter ex-
traction. Usually devices whose model parameters
are to be extracted are divided into three types,as
shown in Fig. 3:devices with wide channel width
and long channel length ;devices with wide channel
width and varying channel lengths; and devices
with long channel length and varying channel
widths.

b
w .
Wide W and long L .
Wide W and different L
— = -
S
£
£
bS]
-
g
-
o
g
|

L

Fg.3 Requiste devicesfor parameter extraction

The devices used to extract model parameters
are shownin Table 3.

Table 3 Devices used to extract model parameters

Table 2  Process parameters required for SOl MOS Device W/ L m/d m)
FET modd parameters extraction Wide W, Long L 20/ 20
Parameter Physical meaning Value Wide W ,Different L 20/ 10 20/5 20/2 | 20/1.2
Tox Thickness of gate oxide 19nm Different W,Long L 10/ 20 5/ 20 2/20 [1.2/20
Ts Thickness of slicon film 340nm
T Thwkness o b_u”efj o 400nm These devices are all fabricated with standard
Nch Doping concentration in channel [4.5 x10%cm- 3 .
Nat Doping concentration in subsirate| 8 x 10%cm- 2 1 21m CMOY SOI technology at the Institute of
Teom Norm measurement temperature 10 Microelectronics of the Chinese Academy of Sci-
L crawn Desgnated channel length 20 1.2m ences. SMART-CUT wafers are used during the
W drawn Designated channel width 20 1.3m device fabrication. The thickness of the slicon film
X Junction depth 310nm is 340nm,and that of the (BOX buried oxide) is

3.3 Requisite measurement data

In termsof required device geometry ,there are
two methods of model parameter extraction:sngle
device extraction and group device extraction. Sn-
gle device extraction is the extraction of all model
parameters with only one type of device geometry.
In early days,when slicon technology was not as

400nm. The substrate is p-type. The thickness of
the gate oxide is 19nm. Body contact technology is
adopted in all devices. Devices with wide channel
width and long channel length are used to extract
parameters that have weak relations to device
geometry. Devices with wide channel width and
varying channel lengths are used to extract param-
eters that are related to the short channel effect.
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Devices with long channe length and varying channd
widths are used to extract parameters that are related
to the narrow channe dfect. Four groups of measure-
ments are performed on each device with a DC parame-
ter andyzer HP4155:

(&) las~Vgs(small Vs ,different Vos)

(b) lasVgs (Vas =Vaa ,different Vis)

(c) lasVas (different Vgs ,Vos =0)

(d) lesVas (different Vgs ,high Vis)

3.4 Objective function

The objective function is one of the most im-
portant factors in the success of model parameter
extraction. Jiang et al'™ . have proposed a BSIM
parameter extraction method based on the (S3
search space smoothing) theory. The objective
function is defined as

Q(P) = z[(lk- f(Vi, P)?]" (3
This objective function can be used only for thefit-
ting of one piece of the device’ s characteristic
curve. For example,the saturation current when
the gate voltageis 5V may be ten times higher than
the saturation current when the gate voltageis 1V.
Usng the above function may result in a better fit-
ting of the saturation current when the gate voltage
is5V and a worse fitting of the saturation current
when the gate voltage is 1V. The above objective f unc-
tionis not adequate for optimization usng dfferent de-
vice geometries. This may achieve a good fit between
measured data and Smulated data for Sngle device ge-
ometry ,but it cannot accomplish a good tradeoff be-
tween different operation regions and between different
device geometries. An ided modd should cover a large
enough operation region and device geometry region.

The objective function adopted in this paper
is[14]

F= (2 - "7 (4)
meas _ fsm 2

SO0 3 e M
where® meas” means measured data’; sm” means
smulated data) devices” means devices with dif-
ferent channel width and channel length that are
used to extract model parameters’ curves’ means
different curves of measured data,and n means the
scanning points of each curve. When only one curve
is needed to extract some given parameters,objec
tive function (4) should be used. When the given
parameters are to be extracted usng many curves
of different devices,objective function (5) should

be used.

For example ,when Vo ,Ua ,Us ,and U. are ex-
tracted ,only the measured ls-Vy data with Vs =0
for awide W and long L device are needed. Thisis
because these parameters have weak relations with
channel width, channel length, and body effect.
Therefore ,objective function (4) should be used. If
objective function (5) is used to extract these pa
rameters,the extracted value of Vwo will be less
than a reasonable value. This is because the value
of the objective function at low V¢ plays an impor-
tant role.

4 Resultsand verification

The SOl MOSFET model parameters of
1 21'm SOI technology have been extracted using
compound the GA proposed above. Figure 4 shows
schematics of the optimization process of the com-
pound GA when extracting the width off set param-
eter WINT and the back bias effect parameters
DWGand DWB. The SOl nMOSFETs with narrow
channel s and varying channel lengths are used. The

-3.1 0)
3.2

a3}
34
35
36}
37}

Fitness

&
-]
T

1 Il 1 i 1

0 20 40 60 80 100
Generation

3204V
315k
310}
3.0s]

Fitness

3.00F

295F

290 TO Tl T2 T3 T4 TS

Generation of temperature

Fig.4 (a Optimization processof GA ;(b) Optimiza
tion process of compound GA
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population has 50 individual s,which is just enough
in this paper. Figure 4(a) illustrates the optimiza-
tion process usng the GA. The fitness of the best
individual reaches equilibrium by only the 15th
generation. The population is premature if only the
GA is used during model parameter extraction. Fig-
ure 4(b) illustrates a fast optimization process of
the compound GA. The fitness reaches equilibrium
inone step of annealing,and the value of the fit-
ness decreases by 8 %. This improvement is due to
the powerf ul local optimization ability of the conr
pound GA. The sign of the fitnessin Fig.4(b) is
opposite to that of the fitness of the GA in Fig. 4
(a). The GA is an optimization algorithm that
searches for the maximum value, 0 its fitness is
the negative value of the objective function. The
SA is an optimization algorithm that searches for
the minimal value ,so itsfitnessis the postive val-
ue of the objective function.

Figures 5 and 6 show the output and trander
characteristics of short channel and narrow channel
devices ,respectively. The measured data are repre-
3 (a) « Compound GA

Measurement o
* Ref. []5] .“uounoun"'

........................

0 1 2 3 4 5
Vv
0.20 -(b)- Compound GA
— Measurement
o Ref.[15]
0.15}F
= 010}
005}
% 1 2 3 2 5

Fig.5 (a) Output characteristics of SOl nMOSFET
with W/ L =20/1 2 The lid line represents meas
ured data. The solid circles represent the smulation re-
sultsin this paper ,and the hollow circles represent the
resultsfrom Ref. [15]; (b) Transer characteristics of
SOl nMOSFET

sented by the solid line,the smulated data with
model parameters extracted in this paper are
marked by solid circles,and the smulated datal™'
with model parameters extracted by the commer-
cial software U TMOST (developed by Slvaco) are
marked with hollow circles.

The smulated data shown in Fig.5 arein ex-
cellent agreement with measured data. The kink
effect is fitted very well. The model from UT-
MOST cannot smulate the kink effect at all ,which
will hinder VL Sl desgn based on SOI technology.
The ratio between the device channel width and
length is animportant factor that affects the occur-
rence of the kink effect. If the ratio is bigger ,the
kink effect is more evident. Thusin Fig.6(a) ,there
is no evident kink effect. The smulation resultsin
this paper agree with measured data very well ,but
the resultsfrom U TMOST deviate far from meas
ured data ,which can also be seenin Fig.6(b) .

6[a) s Compound GA
9 Measurement
sk ™ Ref. [15]

[(b) o Compound GA
025+ —Measurement
’ o Ref.[15]

Fig.6 (a) Output characteristics of SOl NMOSFET
with W/ L =1 2/20 The solid line represents mea
sured. The solid circles represent the smulation results
in this paper ,and the hollow circles represent the re-
sultsfrom Ref. [15]; (b) Trander characteristics of
SOl nMOSFET
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The accuracy of model parameters can be eval-
uated with the equation

N V2

Error = [ nz Doz = Dan Dr:\easD ZJ (6)
This equation can be used to evaluate the error be-
tween smulated and measured data for every seg-
ment of the curve. Equation (6) resembles Equar
tion (5) except for the square root computation,
and is just adequate to evaluate the precison of
model parameters. Table 4 gives detailed compari-
sons between the compound GA and U TMOST for

Figs.5 and 6.

Table 4 Error comparison between compound GA and
UTMOST

W/ L =20/1.2 output characteristics,
Va:0 5V Vg:1.4 5V
Compound GA | 1.4625 |0.59079]0.28914| 0.2409 |0.43118
Ref. [15] 3.1711] 1.6228 |0.99247{0.56171]0. 25769
W/ L =20/1.2 trander characteristics,
Vg:0 5V Vp:0 -3V
Compound GA | 1.9654 | 1.8718 ) 1.4882 | 1.1555| 2.1753
Ref. [15] 3.1913 ] 4.1209 | 7.042 | 6.2033 | 1.2032
W/ L =1.2/20 ,output characteristics,
Vg:0 5V Vg:1.4 5V
Compound GA | 7.0172 |0.96152| 0.2231 |0.37777]0.51844
Ref. [15] 958.04 | 22.594 | 6.5359 | 3.0153 | 1.6869
W/ L =1.2/20 trander characteristics,
Vg:0 5V Vp:0 -3V
Compound GA | 2.2593 | 1.8024 | 1.8517 | 1.8294 | 2.1142
Ref. [15] 185.21 | 100.38 | 268.49 | 182.69 | 180.54

Least square and Newtor-Raphson iteration
are often used by commercial parameter extraction
software. Such methods require complex processes
such as model equation smplification and complex
computations such as gradients and Hessan matri-
ces,which are very difficult to carry out and inevi-
tably introduce errors. Compared with commercial
swoftware ,the model obtained usng the method in
this paper is more preci se.

Comprehensve verification is performed with
devices of different geometries. The results show
that the model parameters extracted in this paper
cover alarge device geometry region that L. 21 m<
wW<2@mand 1l 2 m<L <20 m.

5 Conclusion

We have proposed an improved genetic algo-
rithm and a novel SOl model parameter extraction

method based on the genetic algorithm. The me
thod requires neither complex computations such
as the smplification of model equations and inverse
Hessan matrices nor a profound understanding of
SOI model equations.

Comprehensive verification has been per-
formed usng many device geometries. The smula
tion results obtained usng model parameters ex-
tracted in this paper are in excellent agreement
with measured data. The kink effect of SOl MOS
FETs is fitted better than with commercia oft-
ware. The precison is improved noticeably com-
pared with commercial parameter extraction soft-
ware. The method in thispaper can a o be conven-
iently used in parameter extraction for other de-
vices, such as bulk slicon MOSFETSs, diodes,and
BJTs.
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