基于 Mg 掺杂有机受体薄膜的有机发光二极管

曹国华 秦大山† 曹俊松 曾一平 李晋闽

(中国科学院半导体研究所 新材料部,北京 100083)

摘要:采用 Mg 掺杂有机受体材料 3,4,9,10 perylenetetracarboxylic dianhydride(PTCDA)做为电子注入层,Ag 做为阴极,制备了一种新型的有机发光二极管.同传统的 Mg:Ag 合金电极相比,PTCDA:Mg/Ag 对 Alq3 的电子 注入能力略有提高,但是由于 Ag 在可见光范围内的反射能力高于 Mg:Ag 合金,相应器件的效率提高了近 40%. 在无定形的 PTCDA:Mg 薄膜中,Mg 和 PTCDA 被认为通过弱关联作用形成一种络合物.

关键词:有机发光二极管; 镁掺杂 PTCDA; 电子注入 PACC: 7865T 中图分类号: O484.4 文献标识码: A 文章编号: 0253-4177(2007) \$0-0475-03

1 引言

自从 1987 年 Tang 等人[1] 首次报道双层结构 可以实现高效的有机电致发光以来,有机发光二极 管得到了广泛深入的研究,主要是因为有机发光二 极管可以在平板显示和固体照明上得到广泛的应 用.3,4,9,10 pervlenetetracarboxylic dianhydride (PTCDA)是一种很好的电子传输材料,最高占有轨 道(HOMO)和带隙分别为 6.8eV 和 2.2eV^[2,3]. PTCDA(电子受体)和 Copper phthalocyanine (电 子给体)形成的异质结太阳能电池能有效的把太阳 能转换成电能,转换效率可达到 1.8%^[4]. PTCDA 也被用在有机电致发光器件中实现有效的空穴注 入^[5,6]. 到目前为止,将 PTCDA 或改性的 PTCDA 引人到电子注入过程中还未见报道.本文将 Mg 掺杂 PTCDA 薄膜用作电子注入层, Ag 作阴极, 制备了一 种新型结构的有机发光二极管,并对PTCDA: Mg 薄 膜进行了表征.

2 实验

PTCDA 用作电子受体,N,N_-di(naphthalene-1-yl)-N,N_-diphenyl-benzidine (NPB)用作空 穴传输材料,tris(8-hydroxyquinoline) (Alq3)用作 电子传输材料和发光层,其中 NPB,Alq3 购买后直 接使用,PTCDA 经过一次升华提纯.选用 20Ω/□ 的 ITO 导电玻璃作为器件衬底.ITO 玻璃依次在三 氯乙烯、丙酮、酒精溶剂中超声清洗去脂,然后在去 离子水中超声清洗,最后用 № 气吹干,用 UV-O- zone 处理后使用. 制备了如下两个有机发光二极 管:

器件 1:ITO/NPB 50nm/Alq3 60nm/Mg:Ag 50nm/Ag

器件 2:ITO/NPB 50nm/Alq3 50nm/PTCDA: Mg 10nm/Ag/PTCDA 100nm

其中,器件2中的100nm PTCDA 薄膜用于保 护10nm PTCDA:Mg 薄膜.镀膜系统的背景真空 为1×10⁻⁵ Pa,PTCDA:Mg 的掺杂比例控制在 5:1左右.器件的亮度由校准后的硅发光二极管测 得,电流-电压性能在 Keithley electrometer 617 上 获得,吸收光谱采用 UV-3100 型紫外可见光度计测 量,X 射线衍射表征在 D/max-RB 型 X 射线衍射 仪上完成.

3 结果与讨论

图1比较了器件1和器件2的性能.从图1(a) 可以看出,器件1和2的电流-电压特性相差不大, 说明器件2中注入到 Alq3中的电子数目与器件1 中基本相当.在器件2中,电子首先由 Ag 注入到 PTCDA:Mg 薄膜中,然后被传输到 Alq3/PTC-DA:Mg 界面处,再通过该界面被注入到 Alq3 的 LUMO中.图1(a)充分说明 Ag/PTCDA:Mg 结 构向 Alq3中注入电子的能力和传统的 Mg:Ag 阴 极相当.图1(b)比较了这两个器件的电流效率.可 以看出,当电流密度大于 50mA/cm²时,器件2的 最大效率高于器件1约40%,这主要是因为器件2 采用 Ag 作为阴极.Ag 对可见光的反射能力高于 Mg,而且吸收较少,因此 Ag/PTCDA:Mg 结构增

[†] 通信作者.Email:qindashan@mail.semi.ac.cn 2006-12-05 收到

强了器件2的微腔效应,使 Alq3 发出的光更多地被 耦合出来,从而提高了器件效率.

图 1 器件 1 和器件 2 的电流-电压 (a)和效率-电流(b)曲线 Fig. 1 J-V (a) and efficiency-current density (b) characteristics of devices 1,2

图 2 是 PTCDA 和 PTCDA: Mg 薄膜的 XRD 曲线.可以看出, PTCDA 薄膜在 2θ=27.56°处展现 出一个(102)衍射峰,这说明本征态的 PTCDA 薄膜 是结晶的,而且分子取向基本和衬底平行,分子和分 子间紧密堆积[7]. 但是, Mg 的掺杂破坏了 PTCDA 的晶格,如图 2 所示, PTCDA: Mg 薄膜基本上处 于无定型态.图3给出的是这两个薄膜的吸收光谱. 本征的 PTCDA 薄膜在 477nm(S1(0-2))和 555nm (CT(0-2))处有两个强吸收峰^[8]. Mg 掺杂增强了 PTCDA 薄膜的透光率,例如 PTCDA 在 555nm (CT(0-2))处的吸收峰明显减弱,这也进一步说明 Mg破坏了 PTCDA 分子间的相互作用,和 XRD 的 结果一致.虽然 Mg 掺杂改变了 PTCDA 的光吸收, 但是 PTCDA: Mg 薄膜在 PTCDA 的特征峰如 477nm 处仍有一定的吸收,这说明 Mg 和 PTCDA 分子间通过弱关联作用形成了一种络合物,而这种 络合物既有 Mg 的性质同时又保留了 PTCDA 分子 的特性.PTCDA的LUMO能级为4.7eV,和Ag的 费米能级接近,因此电子很容易从 Ag 注入到 PTC-DA:Mg薄膜中并通过 PTCDA 分子传输到 Alq3/ PTCDA: Mg 界面处;由于 Mg 和 PTCDA 分子间 的弱关联作用, PTCDA 分子中电子很容易传递给 Mg,并通过 Mg 注入到 Alq3 中, 因此, 器件 2 可以 有充足的电子注入.

图 2 沉积在石英衬底上的 50nm PTCDA 和 PTCDA: Mg 薄 膜的 XRD 结果

Fig. 2 X-ray diffraction 20 scans for 50nm PTCDA film and 50nm PTCDA : Mg film on quartz substrates

图 3 沉积在石英衬底上的 50nm PTCDA 和 PTCDA: Mg 薄 膜的吸收光谱

Fig. 3 Absorption spectra of 50nm PTCDA film and 50nm PTCDA : Mg film on quartz substrates

4 结论

本文首次将 PTCDA: Mg 做为电子注入层应 用于有机发光二极管,并采用 Ag 做为阴极,相应器 件的效率比标准器件提高 40%.为开发有机电子注 入材料提供了新思路.

致谢 本实验的测试部分得到了中国科学院半导体 研究所李成基老师的支持,以及李建平和刘宏新老 师在实验过程中给予的技术支持,在此表示诚挚的 谢意.

参考文献

[1] Tang C W, van Slyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51(12), 913

- [2] Hill I G, Rajagopal A, Kahn A, et al. Molecular level alignment at organic semiconductor-metal interfaces. Appl Phys Lett, 1998, 73(5):662
- [3] Forrest S R. Organic-inorganic semiconductor devices and 3, 4,9,10 perylenetetracarboxylic dianhydride: an early history of organic electronics. J Phys. Condens Matter, 2003, 15: \$2599
- [4] Forrest S R, Yoon W Y, Leu L Y, et al. Optical and electrical properties of isotype crystalline molecular organic heterojunctions. J Appl Phys, 1989, 66(12):5908
- [5] Burrows P E, Forrest S R. Electroluminescence from traplimited current transport in vacuum deposited organic light

emitting devices: Appl Phys Lett, 1994, 64(17); 2285

- [6] Bulović V, Tian P, Burrows P E, et al. A surface-emitting vacuum-deposited organic light emitting device. Appl Phys Lett, 1997,70(22):2954
- [7] Heutz S, Ferguson A J, Rumbles G, et al. Morphology, structure and photophysics of thin films of perylene-3, 4, 9, 10tetracarboxylic dianhydride. Organic Electronics, 2002, 3: 119
- [8] Bulović V, Burrows P E, Forrest S R, et al. Study of localized and extended excitons in 3,4,9,10- perylenetetracarboxylic dianhydride (PTCDA) I. Spectroscopic properties of thin films and solutions. Chemical Physics, 1996, 210,1

Organic Light Emitting Diode Using Mg Doped Organic Acceptor Involved in Electron Injection

Cao Guohua, Qin Dashan[†], Cao Junsong, Zeng Yiping, and Li Jinmin

(Novel Materials Laboratory, Institute of Semiconductors, Chinese Academy of Sciences,, Beijing 100083, China)

Abstract: One new-typed organic light-emitting diode using an Mg doped organic electron acceptor (PTCDA) as electron injection layer and Ag as cathode was demonstrated. Compared with the traditional Mg : Ag cathode, PTCDA : Mg/Ag provided nearly the same electron injection to Alq3. But due to the better reflection of Ag to the visible light over Mg : Ag cathode, corresponding efficiency was enhanced about 40%. In the amorphous film of PTCDA : Mg, PTCDA and Mg were considered to form a complex via a weak coupling.

Key words: organic light-emitting diodes; Mg doped PTCDA; electron injection PACC: 7865T Article ID: 0253-4177(2007)S0-0475-03

增刊

[†] Corresponding author. Email: qindashan@mail. semi. ac. cn Received 5 December 2006