台面结构对 4H-SiC 紫外探测器性能的影响*

刘兴昉1.2.* 孙国胜1 李晋闽1 赵永梅1 宁 瑾2 王 雷1 赵万顺1

罗木昌1 李家业1 曾一平1

(1中国科学院半导体研究所材料中心,北京 100083)(2中国科学院传感技术国家重点实验室,北京 100083)

摘要: 制备了4种具有不同光窗口台面结构的4H-SiC 紫外探测器 #1, #2, #3和 #4, 并分别测试了它们的紫外 光响应谱.器件制备在4H-SiC 同质外延层上, 台面为垂直结构, 其中探测器 #1光窗口区由透明 Pt 层、p⁺层、p 层、 n 层和 n^{*} 衬底组成.在探测器 #1的基础上用离子刻蚀的方法分别剥离透明 Pt 层、透明 Pt 层和 p⁺ 层、透明 Pt 层 和 p^{*} 层以及 p 层制备出探测器 #2, #3和 #4.器件的紫外光响应谐表明,紫外响应率最好的是探测器 #2,其次是 探测器 #4, #1, #3, 其中探测器 #2 比其他类型的探测器响应率高 1 个数量级;4 种类型的探测器峰值响应位置 各不相同, 其中探测器 #1 位于 341nm 处, 探测器 #2, #3 和 #4 分别在 312, 305 和 297nm 处.

关键词: 4H-SiC; 紫外探测器; 台面结构; 光窗口 PACC: 6855; 4280; 4270G 中图分类号: TN304.2⁺3 文献标识码: A 文章编号: 0253-4177(2007)S0-0579-04

1 引言

碳化硅材料是第三代宽禁带半导体材料的杰出 代表,它的带宽可达 3.26eV,具有很高的击穿电场 强度,良好的抗辐射性能,耐高温,导热性能好^[1],这 些优异性能使碳化硅在微电子、光电子器件和电路 中具有广泛的应用前景.基于 4H-SiC 的紫外探测 器具有高的量子效率,低的暗电流,可制备出光盲甚 至阳盲型紫外探测器.世界各国的科学工作者已经 研制出多种具有不同结构的 4H-SiC 紫外探测器, 在这此结构中, pn 结型结构^[2] 被广泛研究,并且出 现了许多基于 pn 结改进型的结构,比如基于 4H-SiC 的 p⁺-n 结构^[3],基于 6H-SiC 的 p-i-n 结构^[4], 基于 4H-SiC 的雪崩倍增式 pn 结构[5,6] 等. 本文制 备了基于 4H-SiC 的 $p^+/p/n^-/n^+$ 结构的探测器, 并在此基础上制备了具有不同光窗口台面结构的 4H-SiC 紫外探测器,比较研究了它们的紫外探测效 率,并对其探测机理进行了分析.

2 实验

4H-SiC 同质外延是在国产低压化学气相沉积 (LPCVD)设备中完成的,衬底为从美国 Cree 公司 购买的 n⁺型 Si 面朝〈11 $\overline{2}$ 0〉晶向偏 8[°]的 4H-SiC 单 晶体,外延生长过程中碳源和硅源分别是乙烯(纯度 99.9998%)和硅烷(纯度 99.99995%),流量分别为 0.6和 0.5sccm,载气为氢气(纯度 99.998%),流量 为 5slm,p型原位掺杂剂是硼烷,流量为 0.1sccm. 反应温度为 1500°C,具体外延生长工艺流程可参见 文献[7].在衬底上依次外延了如下三层 4H-SiC: 2000nm 厚的 n⁻层、200nm 厚的 p 层和 200nm 厚的 p⁺层,它们的掺杂水平依次为 2×10¹⁷,3×10¹⁸和 2 ×10¹⁹ cm⁻³.

探测器 #1 的制备工艺过程如下:先用 ICP 刻 蚀出 500nm 深的光窗口凸台面,此光窗口面积为 $300\mu m \times 300\mu m$,然后用 PEVCD 淀积 500nm 的 SiO₂ 作为钝化层.将光窗口区的 SiO₂ 腐蚀掉,露出 p⁺层,溅射 50nm 的透明 Pt 层.此 Pt 层一方面可作 为 p⁺ 的欧姆接触层,另一方面,存在于光窗口区的 Pt 金属主要用于强化探测器内部有源区的工作电 场.它必须透明,可以使紫外光线通过,背面的 n⁺ 欧 姆接触用 Ni,使用 Cr/Au 合金制备 p⁺和 n⁺ 电极. 用 O²⁺ 作为源气剥离上述结构的光窗口区,严格控 制剥离深度,在探测器 #1 的工艺基础上分别剥离 透明 Pt 层、透明 Pt 层和 p⁺ 层、透明 Pt 层和 p⁺ 层 以及 p 层,制备出探测器 #2,#3 和 #4.制备出的 探测器台面结构如图 1 所示.

† 通信作者.Email;liuxf@mail.semi.ac.cn 2006-12-12 收到,2006-12-28 定稿

^{*}国家重点基础研究发展规划(批准号:2006CB6049)和国家自然科学基金(批准号:0713170000,60406010)资助项目

图 1 4H-SiC 探测器台面结构示意图 (a) #1;(b) #2; (c) #3;(d) #4

Fig. 1 Mesa structures of 4H-SiC photodetector (a) # 1; (b) # 2; (c) # 3; (d) # 4

3 结果与讨论

测试了4种器件在波长范围为200~400nm的 紫外光响应谱.测试设备如图2所示,紫外光源为 70 W的氙灯源,光路经单色仪和斩波器调制后聚 焦,并经一市售紫外增强型 Si 探测器校准光波长. 探测器样品放于三轴旋转台上,用一台 KEITHLEY 617 可编程电压表测量光电流,并记录 光电流和光波长的对应曲线关系.

图 2 紫外探测器测试系统光路和电路连接示意图 (1)70 W 的氙灯源;(2)Jobin Yvon H25 (集成了斩波器的单色仪);(3) 紫外透镜;(4)测试样品;(5)三轴样品旋转台;(6)KEITHLEY 617 可编程电表;(7)直流电源;(8)计算机系统.插图;光波变 化示意图

Fig. 2 Configuration of the circuit and light for ultraviolet detection system (1) 70W Xe light source; (2) Jobin Yvon H25 (monochrometer integrated with chopper); (3) Ultraviolet lens; (4) Ultraviolet photodiode; (5) XYZ translator box; (6) KEITHLEY 617 programmable electrometer for DC mode measurement; (7) DC power supply; (8) Computer. Inset: sketch map of optical wavelengths in the test system.

图 3 为零偏压下 4 种紫外探测器的紫外响应结 果.从图中可以看出,紫外响应率最好的是探测器 #2,其次是探测器 #4, #1, #3,其中探测器 #2 的 响应度远高于其他 3 种类型的探测器响应度,至少 高 1 个数量级,如图 3(a)所示.其次为探测器 #1 和 #4的响应度,这两种类型的响应度比较接近,探测 器 #4 的略高于探测器 #1 的,如图 3(b)所示,响应 度最低的是探测器 #3.4 种类型的探测器峰值响应 位置各不相同,其中探测器 #1 位于 341nm 处,探测 器 #2, #3 和 #4 分别位于 312,305 和 297nm 处.

探测器 #1 和 #2 的结构差别在于前者光窗口 被一透明 Pt 金属层覆盖,从两者的响应度来看,透 明 Pt 层对紫外探测率是有负作用的,这可能是因为 Pt 金属层对紫外光具有吸收、反射作用^[8],使得探 测器 #1 的外量子效率降低,从而降低了它的响应 度.另一方面,Pt 金属层对探测器的红移起了很大 的作用,这可能是 Pt 层强化了有源区的电场,使得 位于 Pt 层下 pn 结的 p 侧产生了更大的耗尽区深 度^[6],从而 p 层比结另一侧的 n 层有更高的紫外响 应度^[9].由于剥离了探测器 # 3 光窗口的台面结构

图 3 零偏压下紫外探测器紫外响应度与波长的关系曲线 (a)探测器 # 1, # 2, # 3 和 # 4, (b)探测器 # 1, # 3 和 # 4 图 中竖直线为峰值响应参考线.

Fig. 3 Ultraviolet photoresponse spectra of 4H-SiC photodetectors at zero bias (a) Photodetectors # 1, # 2, # 3, and # 4; (b) Photodetectors # 1, # 3, and # 4

中的 Pt 金属层和 p⁺ 层, 探测器 #3 有源区不能形成有效的电场, 虽然有大量光生电子和空穴在 p 层 形成, 但由于缺乏有效电场, 它们不能被快速地扫向 正负电极, 同时电子的扩散长度很小, 所以它们在有 源区内很快复合了, 因此光电流很小, 器件的响应度 很低. 将光窗口区的 p 层也剥离掉后(探测器 #4), 探测器的响应度又大幅上升, 甚至超过了探测器 #1 的响应度. 虽然探测器 #4 的有源区也缺乏有效电 场, 但是大量光生电子和空穴在 n⁻ 层形成, 空穴的 扩散长度远大于电子的, 所以光生载流子复合的几 率比较小, 光电流比探测器 #3 的大很多, 甚至超过 了探测器 #1 的光电流.

从以上分析可以看出,探测器 #2 具有最好的 紫外探测效率,探测器 #1 和 #4 分别具有最长和最 短的峰值响应波长.如果进一步优化有源区的台面 结构,可以设计出具有高响应度、峰值响应波长可调 的 4H-SiC 紫外探测器.

4 结论

在国产的低压化学气相沉积设备(LPCVD)上 外延生长了多层 4H-SiC 同质外延膜并进行了原位 p型掺杂,各外延层厚度和掺杂情况分别为 2000nm 厚的 n⁻ 层(2×10¹⁷ cm⁻³),200nm 厚的 p 层(3× 10¹⁸ cm⁻³)和 200nm 厚的 p⁺ 层(2×10¹⁹ cm⁻³),在 此基础上制备了4种具有不同光窗口台面结构的 4H-SiC 紫外探测器 #1, #2, #3 和 #4, 并分别测 试了它们的紫外光响应谱.器件台面为垂直结构,其 中探测器#1光窗口区由透明 Pt 层、p⁺层、p 层、n⁻ 层和 n⁺ 衬底组成,在探测器 #1 的基础上用离子刻 蚀的方法分别剥离透明 Pt 层、透明 Pt 层和 p⁺ 层、 透明 Pt 层和 p^+ 层以及 p 层制备出探测器 #2, #3 和#4.器件的紫外光响应谱表明,紫外响应率最好 的是探测器#2,其次依次是探测器#4,#1,#3,其 中探测器#2比其他类型的探测器响应率高1个数 量级;4种类型的探测器峰值响应位置各不相同,其 中探测器 #1 位于 341nm 处,探测器 #2, #3 和 #4 分别在 312,305 和 297nm 处,探测器 #1 和 #4 分 别具有最长和最短的峰值响应波长.如果进一步优 化有源区的台面结构,可以设计出有高响应度、峰值 响应波长可调的 4H-SiC 紫外探测器.

参考文献

- Powell A R, Rowland L B. SiC materials: progress, status, and potential roadblocks. Proceedings of the IEEE, 2002, 90; 942
- [2] Zhou Y H, Zhang Y M, Zhang Y M, et al. Simulation and analysis of 6H-SiC pn junction ultraviolet photodetector. Acta Physica Sinica. 2004, 53(11), 3710
- [3] Violina G N, Kalinina E V, Kholujanov G F, et al. Photoelectric properties of p⁺ -n junctions based on 4H-SiC ion-implanted with aluminum. Semiconductors, 2002, 36(6), 706
- [4] Torvik J T, Pankove J I, van Zeghbroeck B J. Comparison of GaN and 6H-SiC p-i-n photodetectors with excellent ultraviolet sensitivity and selectivity. IEEE Trans Electron Devices, 1999,46(7):1326
- [5] Banc C, Bano E, Ouisse T, et al. Photon emission analysis of defect-free 4H-SiC pn diodes in avalanche regime. Silicon Carbide and Related Materials, 2001, Pts 1 and 2, Proceedings, 2002, 389-3; 1293
- [6] Yan Feng, Zhao J H, Olsen G H. Demonstration of the first 4H-SiC avalanche photodiodes. Solid-State Electronics, 2000,44:341
- [7] Sun Guosheng, Gao Xin, Zhang Yongxing, et al. Homoepitaxial growth and characterization of 4H-SiC epilayers by lowpressure hot-wall chemical vapor deposition. Chinese Journal of Semiconductors, 2004, 25(12);1549
- [8] Palik E D. Optical constants of materials. San Diego; Academic, 1985
- [9] Razeghi M.Rogalski A. Semiconductor ultraviolet detectors. J Appl Phys, 1996, 79(10), 7433

Effect of Mesa Structures on the Responsivities of 4H-SiC Photodetectors*

Liu Xingfang^{1,2,†}, Sun Guosheng¹, Li Jinmin¹, Zhao Yongmei¹, Ning Jin², Wang Lei¹, Zhao Wanshun¹, Luo Muchang¹, Li Jiaye¹, and Zeng Yiping¹

(1 Novel Semiconductor Material Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China) (2 State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100083, China)

Abstract: Four types of 4H-SiC photodetectors, #1, #2, #3 and #4, with different mesa structures in the area of the optical window have been fabricated and characterized by the photoresponse spectra. The vertical photodetectors were based on 4H-SiC homoepilayers. The optical window of photodetector #1 consisted of a transparent Pt layer and a p^{*}/p/n⁻ layer upon the n + substate; and that of photodetector #2, #3 and #4 consisted of a p^{*}/p/n⁻ layer, a p/n⁻ layer and a n⁻ layer, respectively. The photoresponse results showed that the best ultraviolet photoresponsivity was of the photodetector #2, with at least an order of magnitude higher than that of the other three types of photodetectors. It also showed that the wavelength of the peak value varied according to mesa structures, and the wavelengths were 341nm, 312nm, 305nm and 297nm for photodetector #1, #2, #3 and #4, respectively.

Key words: 4H-SiC; ultraviolet photodetector; mesa structures; optical window PACC: 6855; 4280; 4270G Article ID: 0253-4177(2007)S0-0579-04

^{*} Project supported by the State Key Development Program for Basic Research of China (No. 2006CB6049) and the National Natural Science Foundation of China (Nos. 0713170000,60406010)

[†] Corresponding author. Email.liuxf@mail.semi.ac. cn Received 12 December 2006, revised manuscript received 28 December 2006