国家自然科学基金 2006 年半导体科学学科申请概况分析

何杰

(国家自然科学基金委员会信息科学部,北京 100085)

摘要: 2006 年国家自然科学基金委员会半导体学科组受理的面上项目申请数较 2005 年增长近 17%.本文简介了具体的申请与资助概况,分析了半导体学科受理申请的近期动态,介绍学科拟采取的对策,并附 2006 年半导体学科批准资助的面上项目及重点项目,供广大科研人员参考.

关键词:自然科学基金;半导体科学

半导体学科组 2006(2005)年度共收到面上申请项目 519(444)项(增长了 16.9%),其中自由申请基金项目 361(336)项(增长了 7.4%),青年基金项目 150(103)项(增长了 45.6%),地区申请 8(5)项(增长了 60%).占面上项目主体的自由申请仅较 2005 年增长了 7.4%,似乎预示着本学科的基金申请在逐步接近饱和,而我们更希望的是继 2005 年申请项目数大增后的一种短暂调整,青年基金的大幅增长又使我们对未来充满了希望,而地区基金一直未能形成规模,只是随机涨落.整个学科的年增长率与整个科学处的年增长率 19.7%有较大距离.

半导体科学各主要分支领域中,半导体材料 107项(2005年90项),增长18.9%,微电子学176 项(2005年131项),增长34.4%,半导体光电子学 107项(2005年99项),增长8.1%,半导体其它器 件 73 项(2005 年 61 项),增长 19.7%,半导体物理 55 项(2005年60项),减少8.3%.微电子学申请项 目数和增长率高居榜首;半导体材料与半导体光电 子学申请项目数居于次席,但半导体材料保持了正 常的增长率,而半导体光电子学增长率明显偏低;半 导体其它器件与半导体物理申请项目数明显偏少, 不过半导体其它器件增长率尚可,而半导体物理出 现了申请项目数减少的现象,这对半导体科学的发 展构成了严重的隐忧,将影响半导体科学的持续发 展,半导体其它器件项目数偏少也将影响半导体科 学应用范围的不断拓展,今后几年,我们将加强调控 措施对这两个分支领域予以适当倾斜.

经过评审,资助面上项目 94 项,其中自由探索项目 65 项,青年基金 27 项,地区基金 2 项;面上项目各分支领域获资助情况如下:半导体材料 13 项(2005 年 24 项),微电子学 35 项(2005 年 26 项),半导体光电子学 20 项(2005 年 14 项),半导体其它器

件 13 项(2005 年 13 项),半导体物理 16 项(2005 年 16 项). 从申请和资助的情况看,仍然存在前两年的 问题[1],即在半导体材料方面,低维纳米结构材料和 宽禁带半导体薄膜材料是当前的研究热点,有机/无 机复合材料的研究不断扩展,而纳米结构的精细测 试分析、宽禁带薄膜材料的深层次科学问题和相关 衬底材料的研究应予加强;在微电子学方面,片上系 统(SoC)与低功耗技术成为学科的前沿热点,但片 上网络(NoC)、系统封装技术、纳米级工艺下的可制 造性和成品率问题、针对纳米级器件(包括自下而上 的纳米器件)的设计和体系结构研究亟待加强;在半 导体光电子学方面,光电集成器件、面向平板显示和 照明的发光器件是近年的热点领域,但对基于光子 晶体和亚波长微结构的新型光子器件研究、光电子 器件的测试和封装研究、廉价高效光伏器件研究的 支持明显需要加强;在半导体其它器件方面,各种半 导体传感器是近年来的热点,但真正意义上的、较复 杂的微纳光机电系统研究较少,高温、高频、高功率 的功率集成器件和射频集成器件研究需要加强,面 向人类健康和医学应用的微纳传感系统和芯片是需 要进一步加强鼓励的研究方向;在半导体物理方面, 低维量子结构和自旋器件是研究的热点,有关太赫 兹器件、面向集成电路的小尺寸器件、宽禁带半导体 电子器件和光电器件的器件物理研究应该受到大家 的重视.以上问题希望广大科研人员在申请和评议 项目时能够予以关注,力争在2007年能有所改变.

虽然 2005 年半导体学科面上项目申请数较 2004 年增长近 45%,但 2006 年增长仅为 17%,未 能超过基金委的平均增长率,而且其绝对值尚偏低,单就申请项目数来讲,半导体学科在基金委属于小规模的学科^[2],因此形势不容乐观.表 1 列出了 1998 年以来,半导体学科各主要分支领域的申请项

目数,微电子与光电子是增长较明显的两个领域.联想到微电子和光电子相关产业的良好发展,这种现象显示了基础研究与产业之间的良好互动作用,体现了现代基础研究受学科发展需求和社会发展需求的"双力驱动"特征.

-H: 1	半导体学科	4 头亚八	- 사 44 44 45	生元 口业。
オマート	干干净字科	谷十安丌	立领域的 电	T囯坝 H W

年份	半导体材料	微电子学	半导体 光电子学	半导体 其它器件	半导体物理
2006	107	176	107	73	55
2005	90	134	99	61	60
2004	76	87	74	33	35
2003	72	81	51	29	22
2002	62	72	56	33	40
2001	39	57	49	23	31
2000	57	40	41	30	27
1999	59	50	43	34	30
1998	67	46	42	41	50

值得欣慰的是,近年来半导体学科青年基金的申请比例有较大增加,2006年继续保持了高增长势头,申请项目数增长45.6%,资助项目数增长28.6%,说明不断有新鲜血液补充到研究队伍中来,学科对青年基金倾斜的政策效果正在逐步显现,也预示了半导体学科基础研究队伍的前景充满了希望.

目前,随着微电子不断逼近其技术极限,大家都在为后微电子时代做准备,微纳电子学、微纳光子与光电子学、自旋电子学和量子信息学等的相互交叉也日趋深入,相关新现象、新材料、新器件的探索日益增加,光子集成和光电子集成技术也不断发展.这些研究的不断深入、彼此之间的交叉融合,将是今后几年的发展趋势.整个学科正面临寻求新的突破方向,处于发展的关键阶段.从目前学科发展和社会需求来看,我国在这方面的基础研究需要大大加强,以提高在此领域的整体创新水平和可持续发展能力.

根据研究发展动态和总体布局,在广泛征求专家意见的基础上,十一五期间,我们将优先资助纳米器件与技术、宽禁带半导体材料与器件、太赫兹器件、量子调控、半导体集成化芯片系统(SoC)、光信息处理与显示技术、先进光子学技术等方面的研究.今年将着重鼓励以下领域的研究:纳米尺度 MOS器件和工艺问题、射频与数模混合集成电路设计、片上系统和片上网络芯片设计、微纳光机电器件与技术、传感器技术、低维量子结构材料与器件、宽禁带半导体材料与器件、自旋电子学和自旋光电子学材料与器件、有机(聚合物)和有机/无机复合半导体与

光电材料及器件、微纳光子器件等,以及面向健康和生命科学、交叉学科的信息器件和半导体光子技术问题.

第 28 卷

根据鼓励源头创新,为科技工作者创造宽松环境的原则,学科将继续努力确保评审过程中的公平、公正,使真正具有创新性的项目得到保护,注重基础研究与应用研究的紧密结合,兼顾重点部署与学科均衡发展,鼓励新兴分支学科领域研究,鼓励跨学科、跨学部的交叉研究、鼓励有实质性国际合作的研究.继续加大力度,在资助率和资助强度两方面向青年基金倾斜,以鼓励符合条件的一线青年科研人员申请青年基金,继续对具有重要应用前景的优秀项目予以倾斜资助,促进其为国家安全和国民经济发展作贡献,同时也要对学科发展的薄弱环节予以倾斜,确保学科均衡发展.

希望相关领域的广大科技工作者勇于探索,提出更多、更好、更具创新性的项目和建议.共同为我国半导体事业的发展贡献才智和力量.

根据研究发展动态和总体布局,在广泛征求专家意见的基础上,经过评审,学科在2007年受理下列领域的重点项目申请(具体内容以指南为准,并请注意领域名称后的申请代码).

(1)高质量氧化锌(ZnO)体单晶制备的基础研究(申请代码:F0401)

制备高纯度、低缺陷密度、大尺寸 ZnO 体单晶,研究晶体的生长机理和控制技术,缺陷的形态、结构及其形成机理,以及对外延薄膜的影响.

(2)纳米工艺下可制造性和成品率驱动的集成 电路设计方法学研究(申请代码:F0402)

以 65nm 以下超大规模集成电路芯片的可制造性设计(DFM)和成品率驱动设计(DFY)为研究对象,研究能够支持设计和工艺双向优化的工艺模型、基于实测数据的工艺参数偏差模型的成品率分析算法、精度增强技术及 DFM、DFY 驱动的物理设计等科学问题.

(3)GaN 基微电子材料重大基础问题研究(申请代码:F0402)

瞄准高频高温大功率晶体管,研究 GaN 材料相关的重大基础问题,如 GaN 材料和 AlGaN/GaN HEMT 结构材料的异质外延生长动力学及其生长机理、AlGaN/GaN 极化效应和 GaN 材料相关物理特性等,重点开展 SiC 衬底上 AlGaN/GaN HEMT 材料及其新结构材料的研究,并力争获得高性能的HEMT 微波功率器件.

(4)室温连续量子级联激光器核心科学技术研究(申请代码:F0403)

针对量子级联激光器室温连续工作的核心科学 与技术问题,重点研究大功率(瓦级)和低阈值单模 以及基于新原理、新结构、新方法的量子级联激光器设计、制备技术,研制可实用化的中远红外量子级联激光器,并探索其在痕量气体检测中的应用.

(5)新型半导体太阳电池(申请代码:F0403) 不限定具体内容. 表 2 是 2006 年半导体学科批准资助的重点项目,表 3 是获资助的面上项目,供广大科研人员参考.其中部分项目为一年期小额探索项目,部分项目由科学部主任基金经费支持.

表 2 半导体学科 2006 年批准资助重点项目一览

项目批准号	申请人	项目名称	申请单位
60636010	许 军	适用于 65nm 技术代以后的 CMOS 器件栅工程和沟 道工程关键技术研究	清华大学
60636020	王立军	垂直腔面发射大功率激光器的研究	中国科学院长春光学精密机械与物理研究所
60636030	陈良惠	高功率垂直腔面发射激光器的研究	中国科学院半导体研究所

表 3 半导体学科 2006 年批准资助面上项目一览

项目批准号	申请人	项目名称	申请单位	学科代码
60606001	李东升	表面等离子共振增强硅基发光研究	浙江大学	F0401
60606002	肖红领	高铟组分 InGaN/InGaN P-N 结制备及相关物理问题研究	中国科学院半导体研究所	F0401
60606003	罗木昌	3C-SiC 自支撑衬底及其金属氧化物场效应晶体管(MOS-FETs)研究	中国科学院半导体研究所	F0401
60606026	孙士文	采用坩埚上升法生长高质量 CdZnTe 单晶体研究	中国科学院上海技术物理研究所	F0401
60644005	高玉竹	截止波长 8-12μm 的 InAsSb 单晶的特性研究	同济大学	F0401
60676002	桑文斌	籽晶布里奇曼法 CdZnTe 晶体生长及掺杂补偿研究	上海大学	F0401
60676026	李爱珍	施主在直接带隙-间接带隙 III-V 族多元材料中的凝入行 为与规律研究	华东师范大学	F0401
60676060	于广辉	纳米多孔 GaN 材料及其作为外延生长衬底的探索	中国科学院上海微系统与信息技术 研究所	F0401
60606004	程文娟	SiCN 薄膜与电极间的高温接触特性研究	华东师范大学	F0401
60676003	吴惠桢	高迁移率 ZnO 基透明薄膜晶体管研究	浙江大学	F0401
60676004	周圣明	γ-LiAlO ₂ 晶片上非极性宽禁带半导体薄膜制备及其光电 特性研究	中国科学院上海光学精密机械研究 所	F0401
60676005	成步文	绝缘层上 SiGe 材料的制备及弛豫机理研究	中国科学院半导体研究所	F0401
60676006	濮林	温差电低维结构材料制冷器件研制	南京大学	F0401
60606013	杜 刚	纳米级 MOSFET 器件中的准弹道输运效应研究	北京大学	F0402
60606014	王 玮	集成样品预处理过程的微型核酸诊断芯片系统基础研究	北京大学	F0402
60676001	贾 锐	高迁移率各向异性有机场效应管的设计和制备	中国科学院微电子研究所	F0402
60676008	刘明	基于 Top-down 的分子存储器的加工工艺研究	中国科学院微电子研究所	F0402
60676014	李广军	算法级功能可重构的数字硬件体系结构及实现方法研究	电子科技大学	F0402
60676023	张盛东	新型亚 50 纳米部分耗尽型 SOI 器件研究	北京大学	F0402
60676042	张锦文	MEMS 可调滤波器基础研究	北京大学	F0402
60606010	丁艳芳	应用于射频电路的 GPSOI 新材料研究	华东师范大学	F0402
60606011	曹兴忠	多孔 low-k 薄膜材料的新型表征技术	中国科学院高能物理研究所	F0402
60666001	张正平	基于 MgB2 薄膜的滤波器研究	贵州大学	F0402
60606005	白雪飞	安全芯片的功耗分析攻击及对策研究	中国科学技术大学	F0402

续表

				
项目批准号	申请人	项目名称	申请单位	学科代码
60606006	董 刚	基于衬底非均匀温度分布效应的时钟布线优化	西安电子科技大学	F0402
60606007	马昱春	面向时序设计的布图规划算法研究	清华大学	F0402
60606009	黄煜梅	基于多带-正交频分多路的超宽带射频接收电路关键技术 的研究	复旦大学	F0402
60676013	李文宏	DC/DC 电源的数字控制算法和 ASIC 实现研究	复旦大学	F0402
60676015	周玉梅	能量恢复电路的实用化研究	中国科学院微电子研究所	F0402
60676016	曾献君	动态自适应时钟偏移调整及时钟分布网络优化技术研究	中国人民解放军国防科学技术大学	F0402
60676017	夏银水	基于 Reed-Muller 逻辑的低功耗自动逻辑综合和优化技术	宁波大学	F0402
60676018	曾 璇	工艺偏差下的大规模互连线电路与非线性电路分析方法 研究	复旦大学	F0402
60676019	石振华	SOP 系统电源网络完整性设计与分析	武汉大学	F0402
60676020	王伶俐	量子计算电路的设计和综合	复旦大学	F0402
60676021	王春华	新型差分式电流传输器及其构成的电流模式连续时间滤 波器	湖南大学	F0402
60676022	于 民	纳米尺度 CMOS 器件超浅结掺杂工艺 TCAD 研究	北京大学	F0402
60606012	余国彬	纳米光栅掩模提高分辨力的原理和方法研究	中国科学院光电技术研究所	F0402
60676024	杜惊雷	无掩模 SPP 波导干涉光刻研究	四川大学	F0402
60606008	李华伟	面向串扰的时延测试	中国科学院计算技术研究所	F0402
60606015	汪 辉	扩散阻挡层对铜互连内质量输运机制的影响——用户条 件下的晶圆级	上海交通大学	F0402
60606016	毛凌锋	氢、氧、氮相关缺陷的精细电子结构对下一代 GLSI 电路性能的影响	苏州大学	F0402
60666002	杨道国	微电子封装中的界面层裂失效和界面强度可靠性设计方 法研究	桂林电子科技大学	F0402
60676061	罗乐	无铅倒装凸点制备及高密度互连技术的研究	中国科学院上海微系统与信息技术 研究所	F0402
60676009	杨银堂	甚低功耗片上网络(NOC)系统模型及异步互连技术	西安电子科技大学	F0402
60676010	彭元喜	有界延迟服务片上网络研究	中国人民解放军国防科学技术大学	F0402
60676011	杨军	SOC 存储子系统高层建模与存储器内存布局优化研究	东南大学	F0402
60676012	魏少军	基于可重复配置结构的嵌入式 SOC 的软硬件协同设计研究	清华大学	F0402
60676025	晏长岭	双反射带型周期性多量子阱光泵浦垂直外腔面发射激光 器研究	长春理工大学	F0403
60676027	李 成	SOI 基高速、窄谱带响应长波长 Ge 光电探测器研究	厦门大学	F0403
60676028	周剑英	半导体微碟光开关研究	浙江大学	F0403
60676029	吴 巨	InAs/InAl(Ga)As/InP量子线微腔量子电动力学	中国科学院半导体研究所	F0403
60606017	谢文法	柔性顶发射白光有机发光器件制备及其薄膜封装技术研 究	吉林大学	F0403
60606018	郭睿倩	半导体量子点量子阱/聚合物复合薄膜光电材料与器件	复旦大学	F0403
	•	•	•	•

续表

		安 农		
项目批准号	申请人	项目名称	申请单位	学科代码
60676030	王晓平	半导体纳米阵列-聚合物/分子复合电致发光器件的设计、制备、特性	中国科学技术大学	F0403
60676031	李 平	采用光激励和光检测的 LED 芯片非接触检测技术	重庆大学	F0403
60676032	于彤军	GaN 基异质结构的光学偏振问题及其控制	北京大学	F0403
60676033	欧谷平	有机光电功能材料蒽偶联稠化物的合成及其器件的研究	兰州大学	F0403
60606019	刘宇	半导体可调谐激光器瞬态特性的测试分析	中国科学院半导体研究所	F0403
60676034	宁永强	微透镜集成基横模大功率垂直腔面发射激光器	中国科学院长春光学精密机械与物 理研究所	F0403
60676035	陈国鹰	1.55μm 高速(10G)AlGaInAs/InP 半导体激光器的研制	河北工业大学	F0403
60676036	孟宪权	非致冷正人射吸收量子点中、远红外探测器	武汉大学	F0403
60676037	王 钢	新型超高速,低噪声雪崩光电二极管(APD)器件的研究	中山大学	F0403
60676038	毛陆虹	CMOS工艺兼容前均衡光电集成接收机研究	天津大学	F0403
60676039	殷景志	非致冷 InAs/GaSb II 型超晶格红外探测器的研制	吉林大学	F0403
60676040	张宝林	应用于低温热源能量转换的 GaInAsSb 热光伏器件的材料与器件研究	吉林大学	F0403
60676007	林殷茵	基于新型非两端电阻式存储单元结构的相变存储技术研 究	复旦大学	F0404
60676041	韩圣浩	有机半导体的自旋注入效率研究	山东大学	F0404
60676043	廖小平	在线式 MEMS 微波功率传感器设计理论与实现方法的研究	东南大学	F0404
60676044	温殿忠	纳米硅/单晶硅异质结的 SOI MAG-MOSFET 压磁电效应 研究	黑龙江大学	F0404
60676045	张海英	微波大功率 GaAs PIN 二极管器件模型及关键工艺研究	中国科学院微电子研究所	F0404
60676046	夏 洋	InP HBT 双自对准转移衬底方法研究	中国科学院微电子研究所	F0404
60676047	赖宗声	微波 MEMS 分形共平面可调滤波技术研究	华东师范大学	F0404
60676048	杨林安	一种应用于 AlGaN/GaN 微波功率器件的场板栅结构理 论模型和新工艺研究	西安电子科技大学	F0404
60676062	齐鸣	InP基 RTD/HBT 量子单片微波集成电路关键技术研究	中国科学院上海微系统与信息技术 研究所	F0404
60676049	程序	内透明集电区 IGBT——新一类 IGBT	北京工业大学	F0404
60676050	龚树萍	高能 X、伽玛射线探测用高纯 TIBr 半导体单晶及其传感 器制备技术研究	华中科技大学	F0404
60676051	印寿根	有机极化分子材料电输运/场效应及相关器件性质的探索	天津理工大学	F0404
60676052	石瑞英	稀磁半导体/半导体界面对载流子自旋注人和输运特性的 影响	四川大学	F0404
60606020	黄礼胜	纳米尺度相界面结构与 VLS 和 VS 生长机制	南京工业大学	F0405
60676053	庄奕琪	噪声用于半导体自旋信息表征的理论基础研究	西安电子科技大学	F0405
60676054	孙宝权	低维半导体结构自旋动力学研究	中国科学院半导体研究所	F0405
60676063	邵 军	掺杂碲镉汞半导体光学性质的红外调制光谱研究	中国科学院上海技术物理研究所	F0405
60644004	俞重远	基于应变机制长波长 GaAs 基量子异质结构材料的研究	北京邮电大学	F0405

续表

项目批准号	申请人	项目名称	申请单位	学科代码
60676055	黄志高	ZnO基稀磁半导体的材料设计	福建师范大学	F0405
60676056	熊诗杰	半导体纳米结构中激子和其它粒子的互作用及相关光学 性质研究	南京大学	F0405
60606021	邓宁	室温下向半导体内的有效自旋极化注入的研究	清华大学	F0405
60606022	吕红亮	新型结构的碳化硅 MESFET 器件的研究	西安电子科技大学	F0405
60606023	梅增霞	氧化锌接触特性的研究及其在光电子器件中的应用	中国科学院物理研究所	F0405
60606024	王晓东	内嵌量子点的调制掺杂场效应晶体管的光电特性	中国科学院半导体研究所	F0405
60676057	谢自力	新型快速响应 RCE 紫外探测器的基础研究	南京大学	F0405
60676058	李斌成	半导体材料特性的光学检测技术研究	中国科学院光电技术研究所	F0405
60606025	崔利杰	$In_xGa_{1-x}As$ $(x\geqslant 0.53)$ 量子阱中二维电子气的 Rashba 零 磁场自旋分裂	中国科学院半导体研究所	F0405
60606027	郭旭光	太赫兹量子阱光子探测器的蒙特-卡洛模拟研究	中国科学院上海微系统与信息技术 研究所	F0405
60676059	王晓华	Si 衬底上生长的 CdSe/ZnSe 量子点量子线复合结构的受激发射性质研究	长春理工大学	F0405

注:F0401——半导体材料,F0402——微电子学,F0403——半导体光电子学,F0404——半导体其它器件,F0405——半导体物理

参考文献

[1] 何杰,刘宇.国家自然科学基金 2005 年半导体科学学科申请

概况分析. 半导体学报,2006,27(3):564

[2] 何杰,刘宇.我国半导体科学领域基础研究迈入新阶段——国家自然科学基金半导体学科 2004 年申请概况分析. 半导体学报,2005,26(1):215