凹栅 AlGaN/GaN HFET

张志国1,2,3,† 冯 震1,2 杨梦丽1,2 冯志红1,2 默江辉1,2 蔡树军1,2 杨克武1,2

(1 中国电子科技集团公司第十三研究所,石家庄 050051) (2 专用集成电路国家级重点实验室,石家庄 050051) (3 西安电子科技大学微电子学院,西安 710071)

摘要: 研究了总栅宽为 100μm 栅凹槽结构的 AlGaN/GaN HFET,采用相同的外延材料,凹槽栅结构器件与平面 栅结构器件比较其饱和电流变化小,跨导由 260. 3mS/mm 增加到 314. 8mS/mm, n 由 2. 3 减小到 1. 7,栅极漏电减小一个数量级. 在频率为 8GHz 时,负载牵引系统测试显示,当工作电压增加到 40V,输出功率密度达到 11. 74W/mm.

关键词: AlGaN/GaN HFET; 凹栅; 高电压; 高功率密度

EEACC: 1350F; 2560P

中图分类号: TN386 文献标识码: A 文章编号: 0253-4177(2007)09-1420-04

1 引言

半导体 GaN 材料具有宽的禁带宽度、大的电子饱和速度和尖峰速度、高击穿电场等特点,成为国内外研究的热点.基于 AlGaN/GaN 异质结的场效应晶体管(HFET)具有高温、高频、高功率和高功率密度等特性,也已成为研究的热点.

自从 1993 年研制出第一只具有直流特性的 AlGaN/GaN HFET^[1]以来,器件的研究便沿着两个不同的方向进行:高功率密度器件和高输出功率器件.2003 年 Wu 等人^[2]报道,在 SiC 衬底外延材料上制备的器件,工作电压为 120V,工作频率为 4和 8GHz 时,输出功率密度分别为 32.2 和 30.6W/mm,这是输出功率密度的最高结果;SiC 衬底四胞合成总栅宽为 144mm 的功率放大器,工作电压为65V,输出功率大于500W^[3],这是器件的最高功率输出结果.国内在此领域的研究取得了一定的突破,蓝宝石衬底和 SiC 衬底器件的输出功率分别达到4.57 和 6.1W^[4,5].

本文研究了凹槽栅对器件特性的影响,研究表明,采用栅凹槽结构后,AlGaN/GaN HFET 的栅整流特性得到明显改善,器件栅漏之间的漏电流减小一个数量级,理想因子由 2.3 减小到 1.7.器件的工作电压提高,负载牵引系统测试器件的输出功率特性,发现随工作电压的提高,器件的输出功率逐渐增加,当工作电压为 40V 时,总栅宽为 100μm 器件 X 波 段 输 出 功 率 达 到 1.174W,即 功 率 密 度 为 11.74W/mm,达到国内领先水平,实现小栅宽器件

的高功率密度特性.

2 器件制备

采用我所自主研制的 SiC 衬底 AlGaN/GaN HFET 材料,表层生长 n型 GaN 帽层,其中 AlGaN 势垒层厚度为 21nm,Al 组分为 0.26. 研制的器件单指栅宽 50 μ m,总栅宽为 100 μ m,欧姆接触采用 Ti/Al/Ni/Au 复合金属系统,合金后接触电阻为 $0.3\Omega \cdot mm$,采用干法刻蚀技术,形成栅凹槽。图 1 为栅凹槽结构的 AFM 图,其中栅凹槽深度为 4nm,腐蚀后外延材料的方均根粗糙度为 0.28nm。电子曝光形成 γ 栅,电子束蒸发金属 Ni/Au,栅长为 0.35 μ m,器件进行 SiN 钝化处理,钝化后器件电流崩塌小于 10%。

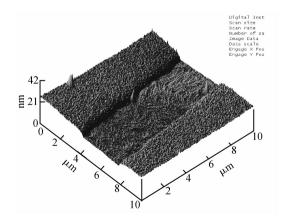


图 1 栅凹槽结构的 AFM 照片

Fig. 3 AFM microphotography of the recessed gate

3 凹槽栅结构对 AlGaN/GaN HFET 特性的影响

对于场效应晶体管,饱和区本征跨导为:

$$g_{\rm m} = \frac{\partial I_{\rm DSS}}{\partial V_{\rm G}} \bigg|_{V_{\rm DS} = {\rm const}} = \frac{\varepsilon(x) v_{\rm sat} W_{\rm G}}{d} \times \frac{V_{\rm GS} - V_{\rm th}(x)}{\sqrt{(E_{\rm c} L_{\rm G})^2 + (V_{\rm GS} - V_{\rm th}(x))^2}}$$
(1)

对于栅长为亚微米器件,(1)式根号中第一项可以忽略,则跨导可以简化为:

$$g_{\rm m} = \frac{\partial I_{\rm DSS}}{\partial V_{\rm G}} \bigg|_{V_{\rm DS} = {\rm const}} = \frac{\varepsilon(x) v_{\rm sat} W_{\rm G}}{d}$$
 (2)

其中 v_{sat} 为载流子的饱和速度; W_{G} 为栅宽; L_{G} 为 栅长;d为 AlGaN 层的厚度; V_{GS} 为源漏电压; V_{th} 为阈值电压. 当器件采用栅凹槽结构后,栅下势垒层厚度减小,栅对导电沟道中 2DEG 的控制能力增强,器件的跨导增加. 为了研究势垒层厚度对器件特性的影响,生长 10nm 厚度的 GaN 帽层,使用 ICP进行低损伤刻蚀,刻蚀深度分别为 5,7,8,10,13 和 16nm,刻蚀后采用相同栅蒸发工艺,栅后分别测试器件的直流特性和跨导特性,数据如图 2 所示. 当势垒层厚度大于 18nm 后,器件跨导随势垒层厚度的减小而增加;当势垒层厚度小于 18nm 后,由于外延材料势垒层厚度薄,器件饱和电流明显减小,跨导减小. 研究结果表明,当外延材料势垒层厚度大于一定厚度时,随势垒层厚度的减小,器件跨导增加,说明势垒层厚度减小,栅对 2DEG 的控制能力增强.

生长 GaN 帽层厚度为 2nm 的外延材料,用于栅凹槽特性的研究,使用 Load-Pull System 对器件的直流特性和连续波输出功率特性进行测试.凹栅深度为 4nm 器件的直流 *I-V* 特性如图 3 所示,饱和电流为 74mA,夹断电压为 - 2.8V,当栅源电压为 2V 时,漏源最大电流达到 112mA.使用相同的外延

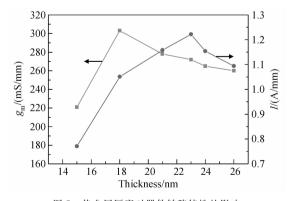


图 2 势垒层厚度对器件转移特性的影响

Fig. 2 Relations of transfer characteristics and barrier thickness

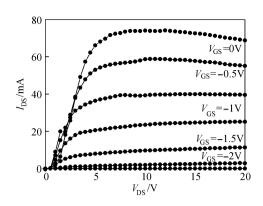


图 3 凹槽栅结构器件的 *I-V* 特性曲线 Fig. 3 *I-V* curves of the recessed AlGaN/GaN HFET

材料、相同工艺制备了平面栅结构的器件,其饱和电流为78mA,夹断电压为-3.7.结果说明,栅凹槽深度为4nm时,没有破坏异质结的极化效应,与平面栅器件比较,饱和电流变化小.同时由于减小势垒层厚度,栅对沟道中2DEG的控制能力增强,夹断电压减小.

尽管栅凹槽对器件的饱和电流影响很小,但由于夹断电压减小,必然会引起器件转移特性的变化.图 4 为凹栅和平面栅结构器件的跨导特性曲线,采用凹栅结构后,器件的阈值电压减小,跨导值由260.3mS/mm(曲线 2)增加到314.8mS/mm(曲线1),增加20.9%,实验结果表明,栅凹槽结构改善了器件的跨导特性.

大量文献报道,GaN 外延材料表面由于长时间与大气接触表面材料被氧化,同时氮元素(N)易从表层材料溢出,形成 n型 N 空位,这些因素均对栅整流特性产生负面影响,栅整流特性退化,将直接影响器件的增益特性,降低功率器件的输出功率密度,因此优化器件的整流特性是高功率密度器件研究的另一个重要内容.图 5 为两种结构器件的栅整流特性比较,其中图5(a)为栅源正向整流特性结果,

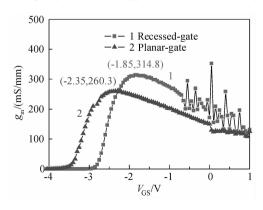
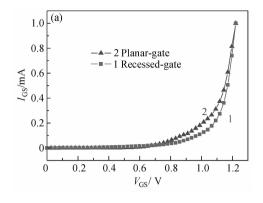



图 4 凹栅和平面栅器件跨导特性曲线

Fig. 4 Transconductance curves of recessed and planar AlGaN/GaN HFET

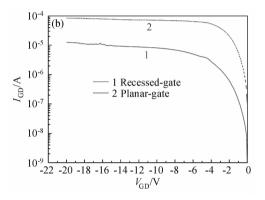


图 5 凹槽栅对器件整流特性的影响 (a)凹槽栅对栅源正向特性的影响;(b)凹槽栅对栅源反向特性的影响

Fig. 5 Rectified characteristic of recessed AlGaN/GaN HFET

利用栅源二极管模型,计算得到平面栅和凹栅结构的 n 值分别为 2.3 和 1.7,金属 Ni 与 AlGaN 接触势垒为从 0.67eV 增加到 0.82eV,这些数据表明,采用栅凹槽结构后,表层氧化层被腐蚀,栅与表层材料的整流效应得到改善.图 5(b)为栅反向特性曲线,栅极漏电流由 10⁻⁴数量级减小到 10⁻⁵数量级,减小了一个数量级,栅极漏电流的减小有助于提高器件的击穿电压和工作电压.研究表明栅凹槽结构能明显地改善器件的整流特性.

4 AlGaN/GaN HFET 高功率密度 特性

对未封装的管芯进行 Load-Pull 输出功率特性测试,图 6 为输出功率与器件工作电压的关系,发现随工作电压的增加,器件输出功率逐渐增加,当电压增加到 40V时,器件输出功率接近饱和.这一数据说明器件工作电压的增加,有助于器件输出功率密度的提高.

选取静态工作电压为 40V,对器件进行输出功率测试,图 7 为器件在频率为 8GHz 时输出功率特性曲线,工作电压为 40V 时当输入信号为 25dBm

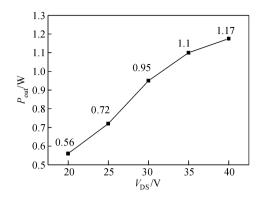


图 6 器件输出功率与工作电压的关系

Fig. 6 Relations of output power and operation voltage of recessed AlGaN/GaN HFET

时,器件输出功率达到最高为30.7dBm,即1.174W,输出功率密度达到11.74W/mm,这一数值为国内同一器件功率密度的最高结果,器件的功率附加效率为35.5%,测试显示器件的小信号增益达到8dB.平面栅器件工作电压为28V时,X波段输出功率密度仅为6.7W/mm,增益为6dB.

5 结论

本文研究了凹槽栅对器件特性的影响,栅凹槽结构可以明显地改善器件的跨导特性,采用相同的外延材料,凹槽栅结构器件与平面栅结构器件比较,其饱和电流变化小,器件跨导值增加,栅整流特性改善,器件的工作电压提高,当工作电压为 40V,频率为8GHz时,功率密度达到11.74W/mm,达到国内领先水平.

尽管器件的输出功率密度达到国内领先水平,但与国外比较仍有较大的差距,同时由于没有采用场板结构,器件的工作电压仍然相对偏低,下一步研

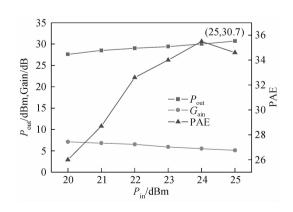


图 7 凹槽栅结构器件的输出功率特性曲线

Fig. 7 Output power characteristic of recessed Al-GaN/GaN HFET

究的重点为优化场板对器件的作用,进一步提高工作电压,提高器件的功率密度特性.

参考文献

- [1] Khan M A, Bhattarai A, Kuznia J N, et al. High electron mobility transistor based on a GaN-AlGaN heterojunction. Appl Phys Lett. 1993, 63(9):1214
- [2] Wu Y F, Keller B P, Keller S, et al. Measured microwave power performance of AlGaN/GaN MODFET. IEEE Electron Device Lett, 1996, 17(9):455
- [3] Maekawa A, Yamamoto T, Mitani E, et al. A 500W push-pull AlGaN/GaN HEMT amplifier for L-band high power application. IEEE MTT-S, 2006, 722
- [4] Zhang Zhiguo, Yang Ruixia, Li Li, et al. Output power of an AlGaN/GaN HFET on sapphire substrate. Chinese Journal of Semiconductors, 2006, 27(7):1255(in Chinese)[张志国,杨瑞霞,李丽,等. 蓝宝石衬底 AlGaN/GaN HFET 功率特性.半导体学报, 2006, 27(7):1255]
- [5] Chen Tangsheng, Jiao Gang, Li Zhonghui, et al. AlGaN/GaN MIS HEMT with AlN dielectric. CS MANTECH Conference, 2006; 227

Recess-Gate AlGaN/GaN HFET

Zhang Zhiguo 1,2,3,† , Feng Zhen 1,2 , Yang Mengli 1,2 , Feng Zhihong 1,2 , Mo Jianghui 1,2 , Cai Shujun 1,2 , and Yang Kewu 1,2

(1 The 13th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050051, China)
(2 National Key Laboratory of ASIC, Shijiazhuang 050051, China)
(3 School of Microelectronics, Xidian University, Xi´an 710071, China)

Abstract: A recessed gate AlGaN/GaN HFET with a total gate length of $100\mu m$ is studied. The device demonstrates an increase in transconductance from 260. 3 to 314. 8mS/mm compared to the unrecessed device, while the saturation current changes slightly. Moreover, the ideality is improved from 2. 3 to 1.7. An output power density of 11.74W/mm is achieved at 8GHz and 40V using a load pull system.

Key words: AlGaN/GaN HFET; recessed gate; high voltage; high power density **EEACC:** 1350F; 2560P **Article ID:** 0253-4177(2007)09-1420-04

[†] Corresponding author. Email: flying200016@163. com Received 20 March 2007, revised manuscript received 28 April 2007