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The KP Dispersion Relation Near the A' Valley in Strained Si,—,Ge,/Si"
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Abstract: Based on an analysis of symmetry,the dispersion relations near the A' valley in strained Si; -, Ge, (0<Cx<C0. 45)/
(001).(111),(101)Si are derived using the KP method with perturbation theory. These relations demonstrate that A’ lev-
els in strained Si; -, Ge, are different from the A; level in relaxed Si;-, Ge, s while the longitudinal and transverse masses
(m;" and m ) are unchanged under strain. The energy shift between the A' levels and the A, level follows the linear de-
formation potential theory. Finally,a description of the conduction band (CB) edge in biaxially strained layers is given.
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1 Introduction

With each new generation of technology, geo-
metric scaling has become an increasingly complex
and expensive task. One way to improve device per-
formance is to enhance the carrier transport by chan-
ging the material properties. Strained Si,-, Ge, alloys
are an attractive material for devices in high-speed in-
tegrated circuits'''. Therefore, in order to obtain the
proper electrical characteristics of strained Si,-, Ge,/
Si devices, correct material parameters, including
strain dependence, are required. Currently, there are
few detailed theoretical calculations of these parame-
ters, especially the features of the CB edge, most of
which were referenced directly in a great amount of
research concerning the design of new device struc-
tures based on strained Si, -, Ge, .

The goal of this work is to obtain CB edge pa-
rameters of strained Si;_, Ge, such as the minima en-
ergy,the number of equivalent CB energy extrema,
m, ,and m/, through the derivation of the dispersion
relation near the A' valley under strain. To achieve
such a derivation, an analysis of symmetry under
strain was performed,and then the dispersion relation
was obtained using the KP method with perturbation
theory. The parameters extracted are in good accord-
ance with those in Refs.[2,3].

2 Derivation procedure

2.1 Analysis of symmetry under strain

Si; -, Ge, alloy is a fully miscible solid solution of
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the Si-like band structure for a range of Ge molar
fraction (0~0.85). The CB edge of the unstrained,
bulk Si, , Ge, (0<x<C0.45) is modeled as a six-de-
generate A, valley with ellipsoidal energy surfaces''.

The biaxial stress in Si;-, Ge, epitaxial layers
grown on variously oriented Si substrates by UHV-
CVD induces a deformation that causes the change of
A; valleys. Partial symmetry is retained in the lattice
of the strained film. Under a tetragonal distortion ari-
sing from growth on a (001) substrate,the six A, val-
leys are not symmetrically equivalent, with the
[ £100] and [0 £ 10] valleys shifting together and
splitting from the [00 £ 1] valleys. Rhombohedral dis-
tortion,arising from growth on a (111) substrate, all
A; valleys are symmetrically equivalent and shift to-
gether. Growth on a substrate of the third orienta-
tion,considered (101) in this work,produces a mono-
clinic distortion and splits the A; levels. The [ £ 100 ]
and [00 = 1] valleys are symmetrically equivalent,
splitting from the [0+ 10] valleys.

2.2 KPP theoretical’® derivation

In the single electron approximation, the eigen-
functions of the Schrodinger equation are the Bloch
function:

T (r) = e*u, (r) (D
where n is the index of the energy band and the wave
vector k changes within the first Brillouin zone.

— h ’
2m,
U'(r) = Usrain (P + U petormation (1) (3)

Vi+ U () ) w(r) = W (r) (2)
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where U gmin () is the periodic field of unstrained
crystal lattice while an additional field U petormation (F) 18
induced by lattice deformation.

Under the biaxial stress imposed by the sub-
strate,in the plane of the interface between the film
and its substrate,the film is forced to adopt the lattice
structure of its host substrate, and therefore lattice
periodicity is preserved under such strain. Moreover,
the elastic strain is small enough so as to be treated as
a small perturbation. Substituting Eq. (1) into Eq.
(2),we get Eq. (4) for the modulating functions u
(r), having the periodicity of the unstrained crystal

lattice.
Ao 272
p L h 4 h k U
S mok )4 2. U u,(r)
= Hkl/l,lk(r) = 5;1(k)unk(r) (4)
where ]/\7: —1ih V is the momentum operator of the e-
lectron.

There are six equivalent energy extremal points
ki(s=1,2,3,4,5,6) for relaxed Si,-, Ge, (0<Cx <<
0.45) ,in the vicinity of which the band is non-degen-
erate. Strain resulting from growth on (001),(101) o-
riented substrates will partially lead to the degeneracy
of K wavevector stars, but not reduce for the (111)
case.

We take an arbitrary extremal point k{ (i =1~
18) into account. Since for any given k., the set u
forms in the space of functions having the periodicity
of the lattice of a complete set,we can expand u , for
any k into functions for k =k .

U (P) = DT A (k= kD w s (r) (5)
This is called the kj-representation. By isolating a cer-
tain part Hk(f) from the Hamiltonian H, .Equation (4)
may be represented as:

(I‘I/‘(‘> + ij) + Hs‘min)u,,,‘(r) = 651(]()”,11((1’) (6)

where
g n  hZkl®
Hy = bt ki p 4 Ui (1) (D)
m, m, m,
) hZ(k? — ki
Hep = D[k — k] - pr K kD (g
m, 2m,
Hslmin = UDcformalion(r) (9)

If k— ki is a sufficiently small quantity,the operator
Hy.p(k—ky) + Hgin(k— ko) may be considered to be
a small perturbation compared to the operator H,i .
Particularly, varying k in the vicinity of ki, the de-
formation potential fields are taken as constant and
independent of the wavevector. It is convenient to de-
note Hwin (k= ko) as Uy for discussion.

Substituting the expansion (5) into (6), multipl-
ying both sides of Eq. (6) by u . .and integrating o-
ver the unit cell, we obtain a system of equations that
give the eigenvalue:
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2 m, XA,
" IA,,,,» + h—(k — ki) o pu (kDAL J
mg
= el (KA, (10)

where

P (ki) = <unké ‘ IA7 | Mn'ké> = Ju;kj, f)un'k{) dr
'Q\J

1D
is the matrix element of the momentum operator at
the point k = ki . While deriving Eq. (10), we consider
that the functions u are orthonormalized in the unit

cell,i.e.

J‘ ulfk(l) uu'k(i) dr = 8;1;1' (12)

Q,

The corresponding terms of H,. ) + H., in Eq. (10)
may be visualized as small corrections to the energy ¢/,
(ki) . The dependence of energy on the wave vector
may be obtained from Eq. (10) by using the ordinary
perturbation theory.

e (k) = e (ki) + el (kD) (13)
2 2 pi2 _ _
k)= Uy + P Tk gy ki
0 Zm, m,
(10

For the second order,we find,

en (k) = el (ki) + el (kD) + e (ki) = e (ki) +
2 _ i2 . i
Uy + K KD R G gy ) 4
0 2m, nm,
) * pn'n(k(i))

h°’ Z (k = ki) « po (ki) (k — ki

mall';én Eil(k(l)) - E;I(k(l))
(15)
where
h i i
(k= ki) + par (K} + l
. nm
E:‘<k6) = Z h (kz _ ,7) X
n'#n [7 + Uki }8mz'J
Zmo 0
e kD« p, Gl +
0 pnn 0 1; [g”(ko) _}
“h (K — ki) U }5 J eh (ki)
2m
— z Z (k k() pml (k())(k k(l)) * pn’n(k(i))
m(ZJn;é,, En(k()) €,, (k(l))
(16)

A comparison between Eq. (15) and the expression of
relaxed Si;-, Ge, shows that strained and relaxed
Si;-,Ge, has an identical CB dispersion relation in
addition to the added constant term, U,(é . This means
that the A' levels in strained Si;_, Ge, will be different
from the A, level in relaxed Si,-,Ge, ,which is attrib-
uted to the two facts: (1) Varying k in the vicinity of
ki ,the deformation potential fields are taken as con-
stant,independent of the K wavevector. To within the
same degree of approximation,therefore,all A’ valleys
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shift rigidly under lattice deformation. That is, all
points in the vicinity of a valley minima shift by the
same account. Thus, the shape of the valley is pre-
served and the position of the extremal point kj is un-
altered,and they are placed at a distance of (0.85 =+
0.03) 2n/a away from the I' point in the A direction;
(2) The CB states without strain perturbation, which
are degenerate in energy, have significantly different
wavevectors,so, for any specific wavevector, no pair
of CB states under strain perturbation are degenerate
or very close in energy. Therefore, any coupling be-
tween them is insignificant and may be neglected. So,
the band index n sampling of the term ¢} (ki) in ex-
pression (15) has no difference from the one for the
relaxed situation.

It is convenient to transform Eq. (15) into a fa-
miliar form to understand the strain effect on CB. Be-

cause the point k{ is extremal, the condition
(Viei)i=' from Eq. (10) gives
0
pnn/(k(i)) +hk(’) =0 (17)

By using this relation, Equation (15) gives the expres-
sion for energy in the vicinity of the extremal point
ki,

en (k) =&, (ki) + Uy +

hz . 1 i i i i
Z,ﬁ:l(m:;ﬂ)”(k“ —kiDCki - kip A8

i

) are given by the rela-
aff/ n

where the quantities (
tion:
(L) _ O, 2 N P (kD) i (kD
myg ) mo o omg el (ki) — el (kD
and p4, (ki) is the a-th component of p,, (ki) (the
indices « and 3 denote the co-ordinates x,y,z).So,we
get the dispersion relation near the A’ valley under

19

strain:
e (k) = e.(ky) + Ael +
h_z[(kx - kiD? 4 (k, - ké>,)2 . (k, - (k(’;z)z}
2 m, my m;

(20)
Finally.taking into account the Ge molar fraction x
which slightly affects the parameterse..m ™ ,Eq. (20)
may be represented as:

e (kyx) = ec(kyrx) + Ael +
li[(kx - ki)’ 4 (ke - ki) 4 (ke = kéz)zJ
2 my; (x) my (x) m; (x)
2D

As noted for Eq. (15) ,the constant-energy in Eq. (21)
is equivalent to that in Eq. (15),showing that only a
minima energy shift occurs under strain.

3 Results and discussion

The positions of the A, levels for the relaxed al-
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Fig. 1 CB effective mass versus Ge molar fraction x in relaxed

Si; -, Ge,

loy e. (ky» X) were obtained from the literature .
The dashed lines in Figs.2,3,and 4 were fitted using
those data. The effective mass components in Eq. (21)
are shown in Fig. 1, which can be represented as two
significant “effective” masses to describe the shape of

the energy ellipsoid namely, the longitudinal and
transverse masses (m," and m, ).

The energy shift Ael may be determined by the
deformation potential theory. The formulae are as
follows™ . Values of parameters for Si and Ge used in
calculation are shown in Table 1. The corresponding

parameters for Si;—, Ge, alloy are obtained by linear

interpolation.
e = (ag — asi_ Ge, )/aSi] L Ge, (22)
For the (001) substrate:
Ex — Eyy = e
€. = — ¢ /a<(><)1) (23)
For the (111) substrate:
€ T €y T €z = % X[2-1/6§" g Jey (24)
For the (101) substrate:
€ = €z = % X [1-=1/6"" Je
€y — €| (25)

Accounting for the six A levels:

1000 — T00) — = —
Ael"™ = Ael"™ = Bi(en T ey ten) + Bl
010 — 010 — —A —A
Ag, = Ae, = Bilew tey ten) + Boey
0ol — 00D — —=A —A
A€c Asc = Za (€.xx + Eyy + €zz) + Ey€ 2z (26)

Substituting this data for any dispersion relation near
the A" valleys, Equation (21) in Si;-, Ge, (0 <Cx <
0.45)/(001),(111),(101)Si may be determined.

Table 1 Values'™ used in the calculation
Parameter Si Ge
ao/nm 0.54309 0.56579
o000 1.296 1.332
oMb 2.275 2.691
AR 1.959 2.222
Ei/eV 1.75 -0.59
Ea/eV 9.16 9.42
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Fig.2 Al levels versus x in Si;-,Ge, /(001)Si
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Fig.3 Al levels versus x in Si;-,Ge, /(111)Si

The dependence of A' valleys under strain resul-
ting from growth on (001),(111),(101) substrates on
the Ge molar fraction x are shown in Figs.2,3 and 4,
respectively. The notation in those figures is as fol-
lows: Solid lines: A
dashed lines: A, level in bulk alloy. As x increases,the

levels in strained alloy film;

film is under increasing planar isotropic compressive
strain. The configuration in Fig. 2 is Si,-, Ge,/(001)
Si, which shows that the strained layer CB edge (B) is
characterized by the [ £ 100],[0 £ 10] valleys, while
for the [00 = 1] valleys, (A) splits from (B) and shifts
to higher energy; The data for the (111)Si substrate
are shown in Fig. 3. Primarily, the difference from
(001) Si is that the CB valleys are not split. The CB
edge is characterized by the same six valleys, which
are shifted only slightly downward in energy;As
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Fig.4 A’ levels versus x in Si;-,Ge, /(101)Si

shown in Fig. 4,growth on a (101)Si substrate results
in the splitting of CB valleys. The [ =100] and [00 +
1] valleys (A) rise above the [0 = 10] valleys (B),
which constitutes the CB edge.

4 Conclusion

The dispersion relations near A" valleys in
strained Si;_ ,Ge, (0<{x<<0.45)/(001),(111),(101)Si
have been derived. These relations demonstrate that
the A’ levels in strained Si,_, Ge, are different from
the A; level in relaxed Si;-, Ge, , while the longitudi-
nal and transverse masses (m; and m, ) to describe
the shape of the energy ellipsoid are unchanged under
strain.

The CB edge in Si;- , Ge,strained layers has been
characterized. The CB edge in Si,-, Ge,/(001) Si is
modeled as four-degenerate A valleys ¢ [ £ 100 ],
[0£10] valleys ) that shift to lower energy in com-
parison with the A; level. The CB edge in Si,-, Ge,/
(111)Si is characterized by the same six valleys, which
are shifted only slightly downward in energy. Growth
on a (101) Si substrate results in the splitting of the
CB valleys. The [ £100] and [00 £ 1] valleys (A) rise
above the [0+ 10] valleys (B) and constitute the CB
edge.
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