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Graph theory for FPGA minimum configurations
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Abstract: A traditional bottom-up modeling method for minimum configuration numbers is adopted for the study
of FPGA minimum configurations. This method is limited if a large number of LUTs and multiplexers are presented.
Since graph theory has been extensively applied to circuit analysis and test, this paper focuses on the modeling
FPGA configurations. In our study, an internal logic block and interconnections of an FPGA are considered as a
vertex and an edge connecting two vertices in the graph, respectively. A top-down modeling method is proposed in
the paper to achieve minimum configuration numbers for CLB and IOB. Based on the proposed modeling approach
and exhaustive analysis, the minimum configuration numbers for CLB and IOB are five and three, respectively.
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1. Introduction

With the rapid development of programmable devices,
field programmable gate arrays (FPGAs) are increasingly play-
ing a critical role in digital circuit design. However, FPGA test-
ing poses a challenge as integrated circuit manufacturing tech-
nologies advance and device scales increase. Therefore, inves-
tigations of FPGA testing has been a popular topicl' 3. The
difficulty of FPGA testing is how to cover as many FPGA in-
ternal resources as possible with minimum testing configura-
tions. Except for the bottom-up approaches studied in Refs. [4,
5], few investigations are involved in the arena. In these two pa-
pers, the authors studied the bottom-up method for minimum
configuration numbers and applied the method to Xilinx Spar-
tan, 3000 and 4000 series FPGA. Assume that there are n con-
figuration bits in a logic block, 2" testing configurations or the
maximum configuration numbers are achieved. In order to get
the minimum configuration numbers from the maximum con-
figuration numbers, two procedures are required, or the bound-
ary conditions of the testing configurations have to be found.
The configurations of a single look-up table (LUT) and multi-
plexer in one logic block are analyzed at first. Then, the con-
figurations of a network consisting of an array of LUTs and
multiplexers are studied. Finally, the minimum configuration
numbers and the corresponding test configurations in terms
of the aforementioned boundary conditions can be obtained.
These two papers concluded that the minimum configuration
numbers for configurable logic blocks (CLBs) of Spartan, 4000
family and 3000 family FPGAs were 4, 5 and 4, respectively.
However, the approach is limited if the CLB contains a large
number of LUTs and multiplexers. Consequently, the boundary
conditions of the testing configurations are not easily acquired.

As a branch of mathematics, the object of graph theory is
graphs. A graph consists of some vertices and edges connect-
ing pairs of vertices. In general, the graph is used to represent
specific relationships between issues. The vertexes represent
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the issues and the edges represent the relationships. Graph the-
ory plays an important role in circuit analysis, and provides a
simple and systematic modeling method which is effective for
many issues. Many circuit problems may be transformed into
graph issues by using some algorithms!® 71,

In this paper, input-output blocks (IOBs) and CLBs in
XC4000 FPGAs are modeled by graph theory. In other words,
an internal logic block and interconnections of a FPGA are con-
sidered as a vertex and an edge connecting two vertices in the
graph, respectively. A tree is derived in terms of the IOB or
CLB architecture. Then the theoretic minimum configuration
numbers are available if we know the maximum indegree for
each vertex. Afterwards we can compute the minimum config-
uration numbers along with the corresponding testing configu-
rations based on the hierarchical relationship of the tree. Also
this algorithm can be extended for other types of FPGAs. In
fact, the technique we propose is a top-down one. As a result,
the difficulty associated with searching the boundary condi-
tions of testing configurations can be relieved even if the CLB
contains a large number of LUTs and multiplexers.

Now graph theory has been applied to FPGA interconnect
routing (IR) testing!® ). However, neither of the two papers
demonstrates how to achieve the minimum configuration num-
bers for IRs.

2. Basics
2.1. Related knowledge on graph theory

A graphisapair G = (V, E) of sets. V is the set of vertices
and E is the set of edges. The vertex set of a graph G is referred
to as V(G), and its edge set as E(G).

A digraph (or directed graph) D = (Vp, Ep) consists of
vertices Vp and edges Ep. Vp is the set of vertices and Ep is
the set of directed edges. We still write uv for (u, v), but note
that uv # vu. We shall always assume that V N E = #[6:71,
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Fig. 1. Fundamental architecture of an IOB in XC4000 FPGAs.
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Fig. 2. Fundamental architecture of a CLB in XC4000 FPGAs.

Assuming that v is a vertex in digraph D, the outdegree
(indegree) of v is the number of the edges which take v as the
beginning (end) vertex, denoting for d+(v) and d~(v). The
sum of the outdegree and indegree of v is called the degree of
v, labeling as d(v).

A graph is called acyclic, if it has no cycles. An acyclic
graph is also called a forest. A tree is a connected acyclic graph.
A directed graph D is a directed tree if the underlying graph of
D is atree. A rooted tree T is defined as follows: the indegree
of only one vertex is 0, while the indegree of the other vertices
is 1. In arooted tree, a vertex u is the ancestor of v, if u # v and
u — v, also v is the offspring of u. A vertex u is the father of v
and v is the son of u if <u, v> is a directed edge. If n vertexes
are the sons of a father, we call them brothers.

2.2. Related knowledge on FPGA

As shown in Fig. 1, each IOB in XC4000 FPGA consists
of two D flip-flops (D-FFs), one D latch, one tri-gate and some
multiplexers, etc.

As shown in Fig. 2, each CLB is composed of two 4-
input LUTs, one 3-input LUTs, two D flip-flops, carry logic
and some multiplexers, etc.

3. Modeling with graph theory

In Fig. 1, 18 components are labeled with symbols D1, D2,
D3...D18, and considered as 18 vertices in a graph. Two ver-
texes are linked with a line if the two corresponding compo-
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Fig. 3. IOB modeling by graph theory.

nents are connected in Fig. 1. In addition, different constraint
conditions are required to apply for multiplexers, D-FFs and D
latches. Only D1 is studied here because D1 and D2 are equiv-
alent in the IOB circuit. Graph for IOB in Fig. 1 is illustrated
in Fig. 3.

In Fig. 3, the solid circle vertices represent the devices in
the IOB, while the edges denote that the adjacent devices are
connected. Each edge is directed. The direction of the edges in-
dicates that signals propagate from the bottom to the top. The
hollow circle vertices represent the input and the output termi-
nals in the IOB, among which I1 is the output terminal, S, O,
EC, OK, R and T are the input terminals. The dashed edges
mean that the wires can be configured simultaneously in one
configuration. However, only one solid edge and more than
one dashed edge are allowed for one solid circle vertex in one
configuration.

A similar manipulation is carried out for CLB in Fig. 2 with
labeling the 20 components as D1, D2, D3...D20. There are 13
input and 4 output terminals for a CLB. The CLB modeling by
graph theory is illustrated in Fig. 4.

As shown in Fig. 4, solid diamonds F, G, H represent LUTs
while solid circle D3 and D4 indicate D-FFs. The hollow circle
vertices represent the input and output terminals in the CLB,
among which symbols YQ, Y, XQ, X are the output terminals
and Cl1, C2, C3, C4 are the input terminals. Except D-FFs de-
noted by D3 and D4, multiplexers are represented by solid cir-
cle vertices in Fig. 4. Three dashed edges and two solid edges
are adjoined to D3 or D4, representing clock signal CLK, en-
able signal EN, data-input signal D, set signal S and reset signal
R, respectively. The signals D and EN can be configured si-
multaneously while the signals S and R only can be configured
alternatively. This constraint is based on the CLB characteris-
tics Similarly, only solid edges are met with the multiplexers.
Of course, the dashed edges which connect the LUTs can be
configured simultaneously.
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Fig. 4. CLB modeling by graph theory.

4. Minimum configuration numbers and the cor-
responding test configurations

4.1. Analysis on CLB

In Fig. 4, we can obtain that the depth, breadth and inde-
gree of each tree is 7, 4 and 4, respectively. An algorithm, called
the depth-first search is employed to study the minimum testing
configuration. One search process translates to one configura-
tion in our study. The algorithm defines that each vertex in a
graph is searched only once. However, some vertices in a CLB
or IOB graph maybe covered more than once due to the charac-
teristics of FPGA. Therefore, we must ensure that each vertex
in the CLB graph is covered at least once.

From Fig. 4, we can obtain that the relation between the
theoretic minimum configuration number N¢ and the maxi-
mum indegree of each vertex dy,y is:

Nc = dpax = 4.

The expression translates to that least four test configurations
are required to get access to all resources in the CLB. Further-
more, application of the depth-first search algorithm can lead
to following procedures:

(1) A vertex in a tree is not necessary to be searched if the
vertex has been searched in another tree.

c1 C2

Fig. 5. Configuration graph of the CLB.

(2) The searching process should be continued if the vertex
has off-springs.

(3) In the searching process, the black edges under the
same vertex only can be chosen once at the same time, but the
red edges under the same vertex can be chosen simultaneously.

(4) For multiplexers D5, D12, D17, D18 in the four trees,
the identical offspring in their corresponding trees are required
to be chosen in each search process.

The minimum configuration number of CLB is 5 in terms
of the algorithm. The detailed searching procedures are listed
as follows:

(1) The first search:

Tree YQ: D1, D5, C1;

Tree Y: D14, H, D19, G, D18, C4, D20, F;

Tree XQ: D2, D17, C3;

Tree X: D16, H, D19, G, D18, C4, D20, F.

(2) The second search:

Tree YQ: D1, D3, D6, D5, C4, D13, D17, C2, D8, D12,
Cl1,D7;

Tree Y: D14, H, D19, G, D18, C2, D20, F;

Tree XQ: D2, D4, D9,D5,C4,D15,D17,C2,D11,D12,C1,
D10;

Tree X: D16, F.

(3) The third search:

Tree YQ: D1, D3, D6, D5, C3, D13, D17, C2, D8, D12,
C4;
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Circuit diagram of the fourth configuration

Fig. 6. Circuit diagrams corresponding to the 5 test configurations.

Tree Y: D14, G;

Tree XQ: D2, D4, D9, D5, C3, D15, G, D11, D12, D10;
Tree X: D16, H, D19, D12, C4, D18, C2, D20, D17, Cl1.
(4) The fourth search:
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Fig. 7. Configuration graph of the IOB.

Tree YQ: D1, D3, D6, D5, C2, D13, G, D8, D12, C3, D7;
Tree Y: D14, H, D19, D12, C3, D18, C1, D20, D17, C4;
Tree XQ: D2, D4, D9, D5, C2,D15, F,D11,D12,C3,D10;
Tree X: D16, H, D19, D12, C3, D18, C1, D20, D17, C4.

(5) The fifth search:

Tree YQ: D1, D3, D6, D5, C4, D13, H, D19, D12, C2,
D18, C3, D20, D17, C3, D8, D12, C2, D7,

Tree Y: D14, G;

Tree XQ: D2, D4, D9, D5, C4, D15, H, D19, D12, C2,
D18, C3, D20, D17, C3, D20, D11, D12, C2, D10;

Tree X: D16, F.

All resources of the CLB are examined exhaustively in five
configurations, as shown in Figs. 5 and 6. Figure 5 is the config-
uration graph and Figure 6 is the circuit diagram corresponding
to the 5 configurations. In Fig. 5, the digital 1 with edges1, dig-
ital 2 with edges2, digital 3 with edges3, digital 4 with edges4,
and digital 5 with edges5 represent each configuration.

After the five search processes for the graph, we can see
from Figs. 5 and 6 that each vertex and edge have been searched
at least once, which means that the CLB is tested fully. In other
words, apart from the carry logic in the CLB, the minimum
testing configuration numbers of CLB is five.

4.2. Analysis on IOB

The identical depth-first search algorithm and search pro-
cedures are applied for IOB investigation. Since trees I1 and
12 have symmetrical structures, so the configuration of I1 is
studied.

(1) The first search:

I1: D1, D10, D11, D12, D13, D18, S, D16, O, D14, EC,
D17, 0K, D15, T;

12: D1, D10, D11, D12, D13, D18, S, D16, O, D14, EC,
D17,0K, D15, T.

(2) The second search:

I1: D1, D3, D7, S, D5, D9, D10, D11, D12, D13, D16, O,
D14, EC, D17, OK, D18, R, D15, T, D8, EC, D6, IK;

12: D1, D3, D7, S, D5, D9, D10, D11, D12, D13, D16, O,
D14, EC, D17, OK, D18, R, D15, T, D8, EC, D6, IK;
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Fig. 8. Circuit diagram corresponding to the 3 test configurations.

(3) The third search:

11: D1, D4, D5, D10, D11, D12, D16, O, D8, EC, D6, IK,
D7,R;

12: D1, D4, D5, D10, D11, D12, D16, O, D8, EC, D6, IK,
D7,R;

All resources of the IOB are examined exhaustively in

three configurations as shown in Figs. 7 and 8. Figure 7 is
configuration graph and Figure 8 is the circuit diagram cor-
responding to the 3 configurations. In Fig. 5, the digital 1 with
edgesl, digital 2 with edges2, digital 3 with edges3 represent
each configuration.

After the three search processes for the graph, we can see
from Figs. 7 and 8 that each vertex and edge have been searched
once at least, which means that the IOB is tested fully. In other
words, the minimum testing configuration numbers of IOB is
five.

5. Conclusion

A modeling technique in Graph Theory utilized for CLB
and IOB configurations of FPGA is presented in this paper. As
shown in the paper, the minimum testing configuration num-
bers for CLB and IOB are 5 and 3, respectively.
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