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A new algorithm of inverse lithography technology for mask complexity reduction
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Abstract: A new complexity penalty term called the global wavelet penalty is introduced, which evaluates the
high-frequency components of masks more profoundly by applying four distinctive Haar wavelet transforms and
choosing the optimal direction on which the highest frequency components of the mask will be removed. Then, a
new gradient-based inverse lithography technology (ILT) algorithm is proposed, with the computation of the global
wavelet penalty as the emphasis of its first phase for mask complexity reduction. Experiments with three typical
65 nm flash ROM patterns under existing 90 nm lithographic conditions show that compared with the gradient-
based algorithm, which relies on the so-called local wavelet penalty, the total vertices of the three results created
by the proposed algorithm can be reduced by 12.89%, 12.63% and 12.64%, respectively, while the accuracy of the

lithography results remains the same.
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1. Introduction

As 193 nm wavelength photolithography systems are be-
ing pushed to fabricate devices beyond 65 nm technology, in-
verse lithography technology (ILT) is becoming more promis-
ing among many types of resolution enhancement technolo-
gies. Compared with optical proximity correction (OPC)M,
ILT uses a unique outcome-based approach to mathematically
determine the mask patterns that produce the desired on-wafer
results. A general photolithography system is represented in
Eq. (1), where the function Litho(.)!?} is complicatedly non-
linear, and mainly consists of an optical model and a resist
development model. The variables ‘mask’ and ‘contour’ rep-
resent the lithography mask and lithography result on wafer,
respectively. The mathematical description of ILT is shown in
Eq. (2).

contour = Litho(mask), (1

mask* = Litho™'(z), ()

where ‘z’ represents the target patterns on wafer, and mask* is
the optimal mask calculated from ILT.

Various types of optimization methods can be used in
ILT. Xiong and Zhang developed a simulated annealing-based
method with good accuracy and fast speed®. Yang er al.
described a seamless-merging-oriented parallel ILT with a
gradient-based method[*!. Shen, Yu and Pan developed a DCT-
2-based method and an initial sub-resolution assist feature
(SRAF) insertionl]. The level set method!® 7! was adopted
recently for its merits in handling topological complexities
such as corners and cusps!®! and describing the geometric con-
straintsl®!; its drawbacks are that some remedies should be
taken to speed up the computation timel'?] or deal with the so-
called re-initialization issues!' . No matter which ILT method
is used, complexity reduction has always been a practical focus
both for research and application!!2].
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A major contribution of this paper is that a new complex-
ity penalty term called the global wavelet penalty, which is
based on the Haar wavelet transform['3], is developed. Un-
like the complexity penalty term in Ref. [14], which applies
Haar wavelet transform on a fixed direction and is thus named
as the local wavelet penalty here, the global wavelet penalty
evaluates the high-frequency components of masks more pro-
foundly by applying four distinctive Haar wavelet transforms
and choosing the optimal direction on which the highest fre-
quency components of the mask will be removed. As the global
wavelet penalty is developed from the local wavelet penalty,
the gradient-based ILT method used in Ref. [14] is adopted
here to compare these two complexity penalty terms more con-
veniently. The new gradient-based ILT algorithm is proposed
with the computation of global wavelet penalty as the emphasis
of its first phase for mask complexity reduction. Experiments
with three typical 65 nm flash ROM patterns under existing
90 nm lithographic conditions show that when comparing the
ILT algorithm with the local wavelet penalty, the total vertices
of'the three results created by the proposed algorithm can be re-
duced by 12.89%, 12.63% and 12.64%, respectively, while the
accuracy of the lithography results remains at the same level.

2. The Haar wavelet transform

Haar wavelet transform is a transform process that departs
one-dimensional arrays or two-dimensional matrices into low-
and high-frequency components. For i € N, we define array
X = {x(i)}, where the pixel (i.e. element) in position i of array
X is x(i); in the same way we can define array A = {a (i)} and
D = {d (i)}, with their pixels being expressed as in Egs. (3) and
4).

a(i) = (0.5)*[x(2i) + x(2i + )], 3)

(© 2012 Chinese Institute of Electronics
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Table 1. The input matrix M (left) and the result matrix after Haar wavelet transform (right).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 9 0 0 -1 0 0
0 0 2 4 10 8 0 0 0 8.5 10 0 0 -1.5 0 0
0 0 4 6 8 10 0 0 0 0 0 0 0 0 0 0
0 0 6 10 8 12 0 0 0 0 0 0 0 0 0 0
0 0 8 10 12 8 0 0 0 -1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 05 0 0 0 05 =2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 2. The four parts of the result matrix.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 9 0 0 —1 0 0 0 —1 0 0 0 0 1 0

0 8.5 10 0 0 -05 0 0 0 -1.5 0 0 0 -05 -2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Left-up part Right-up part Left-down part Right-down part

added to the gradient-based ILT cost function, as in Eq. (5).
d@@) = (0.5) % [x(2i) — x(2i + 1)]. 4

The process of calculating arrays A and D from array X
is the Haar wavelet transform on a one-dimensional array. The
pixels in arrays A and D can be considered as average values
and deviation values of pixels in array X, or in other words
they are low- and high-frequency components of array X, re-
spectively.

We can see an example of Haar wavelet transform as fol-
lows. Array X = {x(i)} = {10, 13, 25, 26, 29, 21, 7, 15}, and
after applying Haar wavelet transform on array X, the result
array is {a(i),d(i)} = {11.5, 25.5, 25, 11, —1.5, -0.5, 4, —4}.
Note that arrays A and D are shown together for convenience.

Running Haar wavelet transform on a two-dimensional
matrix can be considered as applying two consecutive one-
dimensional Haar wavelet transforms, first on the matrix rows
and then on the columns. We use matrix M at the left of
Table 1 as an example to demonstrate the two-dimensional
Haar wavelet transform, while the result matrix after Haar
wavelet transform is shown at the right of Table 1.

The result matrix can be divided into four parts, namely
left-up, right-up, left-down and right-down, all of which are
shown separately in Table 2.

The above process for obtaining the four parts that com-
pose the result matrix is Haar wavelet transform on a two-
dimensional matrix. The left-up part contains the average val-
ues for the rows and columns, which possess the low-frequency
components of matrix M . The other three parts can be consid-
ered as three different types of high-frequency components of
matrix M : the right-up part contains deviated row and average
column values; the left-down part is calculated in a reversed
order compared with the right-up part; while the right-down
part contains the deviation values for both matrix rows and
columns.

3. The local wavelet and global wavelet penalties

Although the major target of ILT is to make wafer contour
as close as possible to the ideal pattern, there are still other
targets, such as a large process window and a low mask error
enhancement factor. For this reason, many penalty terms are

k
ILT_COST = ) "W, x P;, (5)
i=1

where k is the total number of the penalty terms, P; represents
the ith penalty term and W; is the corresponding weight. The
complexity penalty term is one of the penalty terms specifi-
cally used for mask complexity reduction. Without this com-
plexity penalty term, a mask created by ILT would probably
have complexity problems stemming from the huge increase
in total vertices in the mask. The mask will become very diffi-
cult and expensive to manufacture in such a manner.

Many kinds of complexity penalty terms have been devel-
oped in earlier ILT research. As the global wavelet penalty is
developed from the local wavelet penalty, we will first have a
brief review on the local wavelet penalty from a previous study.

3.1. The local wavelet penalty

As mentioned before, the complexity penalty term pro-
posed in Ref. [14] is named here as the local wavelet penalty
(LWP), which is based on Haar wavelet transform to reduce
mask complexity. Following the introduction in Section 2, the
right-up part of the result matrix is now defined as matrix H;
the left-down part is defined as matrix V'; the right-down part
of the result matrix is defined as matrix D, while the pixels in
these three matrices can be expressed as in Egs. (6)—(8), re-
spectively. The pixel (i, j) in matrix M with a size of U*V is
termed as m(i, j).

h(i, j) =m2i,2j) —m(2i,2] + 1) + m(2i +1,2j)

—mQ2i +1,2j + 1), (6)

(i, j) =m2i,2j) +m2i,2j + 1) —m(2i + 1,2j)

—mQ2i +1,2j + 1), )

d(i,j)=m2i,2j) —m2i,2j +1) —m(2i +1,2j)

+m2i +1,2] +1), ®)
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Table 3. Haar groups that can be detected by Haar wavelet transform in LWP.

Table 4. The Haar groups that cannot be detected by LWP.

Table 5. Haar groups based on reference point P(a, b).

Table 6. Four unique Haar group results based on reference points P (0,0), P(0,1), P(1,0) and P(1,1).

P(a, b) selected Values of a, b from P(a, b)

Haar group results based on reference point P(a, b) with different values of i and j

P(0,0) a=0b=0
P(0,1) a=00b=1
P(1,0) a=1,b=0
P(1,1) a=1b=1

m(2i,2)).m(2i,2j + 1),m@2i + 1,2j),m@2i + 1,2j + 1)
mQ2i,2j +1).,mQ2i,2j +2).mQ2i +1,2j +1).mQ2i +1,2j +2)
mQi +1,2),mQi + 1,2j +1).m2i +2.2j).mQ2i +2.2j + 1)
mQi + 1,2 +1).m(2i + 1,2j +2),mQ2i +2.2j +1).m2i +2.2j +2)

wherei,j € N,0<2i <U—-2,0<2j <V -2 LWP
expressed as the sum of high-frequency components is defined
in Eq. (9).

U
Ry=)_

U=2
2
Jj=0

V2—2

D (G )+ G ) +dG )P 9)
i=0

The gradient values of LWP are given as Eq. (10).

R, B
omQi + p.2j +q)

2*[3*m(2i + p,2j +q) —mQ2i + p,2j +q1)

. . . . . (10)
—m(2i + p1,2j +q) —mQ2i + p1.2j + q1)]

where p = 0,1 andg =0, 1. p; = (p+1) mod 2 and g; =
(g+1) mod 2. As we can see, the gradient value at certain posi-
tions actually depends on the corresponding four pixels around
1it.

By adding LWP into the cost function in Eq. (5), the high-
frequency components of the mask could be reduced through
the iterations of ILT optimization.

3.2. The global wavelet penalty

The best possible mask solution based on LWP would
implicate that R, in Eq. (9) is equal to zero, which can be
achieved by Eq. (11).

m(2i,2j) =mQ2i,2j + 1) = mQ2i + 1,2j)

=mQi +1,2j +1). (11)

We define the four pixels m(2i,2j), m(2i,2j +1), m(2i +
1,2j)and m(2i +1,2j + 1) as one Haar group. By changing
the values of i and j, there are many Haar groups in matrix M,
illustrated by each frame block in Table 3. As high-frequency
components, or rather the pixel deviations exist in pixel groups,
we can use the pixel groups to reduce the high-frequency com-
ponents of the mask.

As illustrated in Table 4, high-frequency components
might exist in other types of Haar group, for example
m(2i,2j + 1), m2i,2(j + 1)), m(2i + 1,2j + 1) and
m(2i + 1,2(j + 1)), which cannot possibly be detected by
Haar wavelet transform in LWP. This limitation of LWP could
possibly lead to irregular patterns and make the ILT results not
very acceptable. Based on this fact, we conclude that LWP is
incomprehensive for mask complexity reduction in a certain
degree and could be further improved.

As high-frequency components depend on Haar groups,
we propose a new method of locating Haar groups based on
reference points to detect all the possible Haar group results.
P(a,b) is selected as an ordinary reference point and Haar
groups are formed by m(2i +a, 2j +b),m(2i +a,2j +1+b),
mQRi +1+a,2j +b)andm2i +1+a,2j + 1+ b) based
on P(a,b) with different values of i and j, where a,b € N,
i,jeZ,—a<2i<U—-2—a,-b<2j <V —-2-—b,asin
Table 5.

In Appendix A, we prove that no matter how the reference
point P(a, b) is selected, there are only four unique Haar group
results based on reference points P (0, 0), P(0, 1), P(1,0) and
P(1, 1), respectively, as in Table 6, where i, j € N,0 < 2i <
U—-2—a,0 <2j <V —2—b.Weassume that these four Haar
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Fig. 1. The whole flow of our new algorithm.

group results can be detected by four distinctive directions of
Haar wavelet transform, respectively, as follows:

@ Direction 1 case: Haar group results based on reference
point P (0, 0) can be detected by direction 1 of the Haar wavelet
transform on the input matrix.

@ Direction 2 case: Haar group results based on reference
point P (0, 1) can be detected by direction 2 of the Haar wavelet
transform on the input matrix.

@ Direction 3 case: Haar group results based on reference
point P(1, 0) can be detected by direction 3 of the Haar wavelet
transform on the input matrix.

@ Direction 4 case: Haar group results based on reference
point P (1, 1) can be detected by direction 4 of the Haar wavelet
transform on the input matrix.

The three different types of high-frequency components of
matrix M can be calculated in Eqgs. (12)—(14) based on these
four Haar group results in Table 6.

G.h(i,j)=mQi +a,2j +b)—mQ2i +a,2j +1+b)
+mQi+1+a.2j +b)

—mQi +1+4a,2j +1+b),
(12)

Guv(i,j)=mQi+a,2j +b)+mQi+a,2j +1+b)
—mQ2i +1+a,2j+b)
—mQi+14+a,2j+1+0b),

(13)

Gd(@,j)=mQRi+a,2j +b)—mQi +a,2j +1+b)
—mQ2i+1+a,2j+b)
+mQ2i+1+a,2j +1+b),

(14)

wherei, j e N,0<2i SU-2-a,0<2j <V —-2—-b.The
values of a and b are from P (a, b) of the four direction cases.
We use Eq. (15) to calculate the complexity penalty terms for
the four direction cases, which are named as G_Ry, -1, G_R, 2,
G_Ry -3, G_Ry, 4, respectively.

U—2—a U—2-b
2

GRyx= Y Y (GAG P+ Gl ))?

j=0 i=0

+G.d(, j)?, (15)
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where x in Eq. (15) means the direction case we select. The
largest of these four complexity penalty terms is renamed as the
global wavelet penalty (GWP), whose corresponding direction
is chosen for applying Haar wavelet transform, as in Eq. (16).

Ry = max(G_Ry_1,G_Ry 2,G_Ry 3,G_Ry, 4). (16)
The gradient values of GWP are given as Eq. (17).
Ry _
omQ2i +p+a.2j +q+b)
23mQ2i + p+a,2j +q+b)
—mQi+p+a,2j+ +b
Qi+p J+aq1+Db) (17)

—mQ2i + p1+a,2j+q+b)
—mQ2i + p1 +a,2j +q1 + b)],

where p =0,landg =0, 1. p; = (p+1) mod 2 and ¢q; =
(¢+1) mod 2. The values of ¢ and b depend on the direction
selection in Eq. (16). Just like Eq. (10), the gradient value of
GWP at a certain position depends on the Haar group at the cor-
responding position. The gradient value at the place not cov-
ered by Haar groups is equal to 0. Take direction 4 as an exam-
ple. Asa = 1 and b = 1, the gradient at the place of row = 0
or column = 0 is equal to 0. We can find that if the direction 1
case is chosen, the gradient values of GWP in Eq. (17) are the
same as the gradient values of LWP in Eq. (10), which means
that LWP is a special case of GWP.

GWP in Eq. (17) is dependent on the four distinctive direc-
tions of Haar wavelet transform, and the optimal direction on
which the highest frequency components of the mask will be
removed is selected. While LWP in Eq. (10) is calculated by ap-
plying Haar wavelet transform in the fixed direction. By adding
GWP into the cost function in Eq. (5), the high-frequency com-
ponents of the mask could be reduced more effectively than in
LWP.

4. The flow of our new algorithm

The whole flow of our new algorithm, which consists of
two phases, is shown in Fig. 1. In the first phase GWP is se-
lected as the complexity penalty term. When the first phase’s
criterion is met, its result is selected as the input of the second
phase, while the complexity penalty term is changed to LWP.
In this way we can incorporate both the merits of GWP and
LWP in our new algorithm. The most attractive merit of GWP
is that by adding GWP in Eq. (5), the high-frequency compo-
nents of the mask could be reduced more effectively than LWP.
However, there may be binary issues left. During the process
of ILT algorithm with GWP, many pixels in a large range tend
to be equal to each other, which reduces the high-frequency
components at these places, and this trend may cause the pixel
values at certain places to be away from 0 or 1 if some of the
pixel values are originally close to 0, while others are originally
close to 1, which leads to the binary issues. We use LWP in the
second phase, as one important merit of LWP is that there are
no binary issues for the results of the ILT algorithm with LWP.
According to Eq. (11), there are only four pixels in the fixed
Haar groups with a tendency to be equal to each other, which
can be easily realized during the process of the ILT algorithm

with LWP. To sum up, not only can the high-frequency compo-
nents be reduced effectively with GWP, but binary issues can
also be solved with LWP in our two-phase algorithm.

Although applying the ILT algorithm with LWP based on
the first phase’s result will possibly make the high-frequency
components of the first phase’s result increase again, we have
performed lots of experiments to prove that the deviation range
is very small (less than 5%) and that the high-frequency com-
ponents of the final ILT result are still dominated by the first
phase’s result. Note that we do not combine LWP and GWP
into one phase, as LWP is actually the direction 1 case of GWP.
If we do so, only the high-frequency components at the Haar
groups detected by the direction 1 case of GWP can be reduced
effectively, while the reduction effects of the high-frequency
components at the Haar groups detected by the other three di-
rection cases of GWP may not be quite as acceptable as the
influence of LWP. At the same time, some binary issues may
be left in the ILT results as the influence of GWP.

5. Experiments and discussion

Before introducing the experiments, we would like to ex-
plain our study motivation. As many fabs manufacture Al-
based 8 inch wafers, the minimum feature size can only reach
90 nm. It is very meaningful if we can push the feature size to
80, 70 or even 65 nm under the 90 nm lithography conditions,
as the number of die in each wafer can be increased effectively.
Because of the limitation of MRC rules, it is very difficult to
get good OPC results based on 90 nm lithography conditions at
the places with narrow spaces, such as those with 65 nm spaces
between two line-ends. At the same time, ILT using a mathe-
matical approach can produce acceptable results which cannot
be realized in OPC. This merit of ILT is very meaningful, es-
pecially for producing a shrunk flash array with a minimum
feature size much less than 90 nm under the 90 nm lithography
conditions. It is very time consuming to run the ILT algorithm
on the whole shrunk flash array, so instead we run the ILT al-
gorithm on a shrunk standard flash unit, whose ILT result can
be used to form the flash array’s ILT result with certain rules.
The masks created by our new algorithm have fewer complex-
ity issues, which makes them more useful in guiding the actual
production. Some adjustments will be performed based on the
ILT results to produce more regular results for manufacture.
For example, we will use rectangular patterns to replace the
irregular SRAF produced by the ILT algorithms. Suitable ad-
justments should be selected to keep a good balance between
the accuracy of the lithography results and the manufacturabil-
ity of the final results after adjustments.

There are three different algorithms implemented and
compared in our experiments: (1) an algorithm without com-
plexity penalty term; (2) an ILT algorithm with LWP; (3) our
new algorithm. For convenience, the algorithm without com-
plexity penalty term is defined as Algorithm 1; the ILT algo-
rithm with LWP is defined as Algorithm 2; and our new algo-
rithm is defined as Algorithm 3. All the settings, such as main
target, penalty terms and the corresponding weights, are the
same except for the complexity penalty terms of these three
algorithms.

We chose three 65 nm flash array results to demonstrate
the validity of our new algorithm. The flash standard units, the
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Fig. 2. (a) Flash unit 1, (b) the corresponding environment and (c) flash pattern 1.

Fig. 3. (a) Flash unit 2, (b) the corresponding environment and (c) flash pattern 2.

Fig. 4. (a) Flash unit 3, (b) the corresponding environment and (c) flash pattern 3.

corresponding environment and the flash patterns are shown
in Figs. 2—4. The flash patterns, which are used as mask tar-
gets and original input matrices in the experiments, are formed
by placing flash units in the center and symmetrically plac-
ing parts of other flash units as the environment of the cen-
ter flash unit. The extending length from the other flash units
to the center flash unit is longer than half of the lithography
model’s ambit, to guarantee the simulation accuracy of the cen-
ter flash unit. Note that it is not necessary to keep symmetric
relations for flash patterns, but with symmetric relations it is
more convenient to apply ILT algorithms. As the environment
surrounding each flash unit is composed of the same patterns,
we should also update the ILT results of the flash units in the
environment. Before performing the next loop, the central flash
unit’s ILT result is copied to replace the ILT results of the flash
units in the environment. In this way, we can guarantee that all
the flash units have the same ILT results.

The lithography model is a typical 90 nm model with para-
meters as follows: the wavelength is 193 nm, the numerical

aperture is 0.7, the annular illumination with outer sigma is
0.75, the inner sigma is 0.4, the threshold is 0.3, the kernel am-
bit is 1280 nm, the kernel grid is 10 x 10 nm? and the kernel
number is 8.

The cost function is shown in Eq. (18) as,

J(M) = VﬁdF(M) + VaerialRaerial(M) + Vdistis(M)
+ ywRw(M), (18)

where F(M) stands for the main target penalty term with
weight = 1, Ryeriai(M) stands for aerial image penalty term
with weight = 0.25, Rgis(M) stands for discretization penalty
term with weight = 0.002, Ry, (M) is the complexity penalty
term with weight = 0.01; for Algorithm 1, R, (M) is not set;
for Algorithm 2, R, (M) is defined in Eq. (9); and for Algo-
rithm 3, Ry (M) is defined in Eq. (16). Except for Ry (M),
detailed information of the other three penalty terms and their
gradient expressions can be found in Refs. [15, 16].

As the deviations in running time for a single loop be-
tween the three algorithms are very small, we simply use loop
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Fig. 5. The ILT results and the corresponding simulation results on flash pattern 1: (a) Algorithm 1, (b) Algorithm 2 and (c) Algorithm 3.

Fig. 6. The ILT results and the corresponding simulation results on flash pattern 2: (a) Algorithm 1, (b) Algorithm 2 and (c) Algorithm 3.

times to measure the running time on a 2.80 GHz computer. As  in Eq. (19).
the weight of Ry;s(M)is the smallest compared with the other . o
penalty terms, for Algorithm 1 and Algorithm 2 we use devi- D = Rais(Mso+1) = Rais(Msor), (19)

ation values of Rgis(M) for every 50 loops as the criterion, as ~ where My stands for the temporary mask variable at loop 50k
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Fig. 7. The ILT results and the corresponding simulation results on flash pattern 3: (a) Algorithm 1, (b) Algorithm 2 and (c) Algorithm 3.

Fig. 8. The ILT results of flash unit 1 (top), 2 (middle) and 3 (down) in the center of the corresponding flash patterns: (a) Algorithm 1, (b)
Algorithm 2 and (c¢) Algorithm 3.

in the ILT algorithm, for k € N. When k = 0, the temporary
mask variable is the same as the input mask. The expression of 1

U-1V-
Rais(M)is shown in Eq. (20). Rus(M) =) 3 (1= @mG.j) =D (0)
i=0 j=0
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Table 7. The running time for the flash patterns after applying three algorithms.

Loop times

Algorithm 1 Algorithm 2 Algorithm 3
Flash pattern 1~ 750 750 2004-700
Flash pattern2 500 500 1504450
Flash pattern 3~ 550 550 100+550

Table 8. The accuracy of the simulation results of the center flash units after applying three algorithms.

Range of EPE Algorithm 1 Algorithm 2 Algorithm 3
center flash unit1  EPEs >=5nm 8 8 8

The largest EPE 7.1 nm 8.3 nm 8.1 nm
center flash unit2  EPEs >=5nm 0 0 0

The largest EPE 4 nm 4.5 nm 4.7 nm
center flash unit3  EPEs >=5nm 14 14 14

The largest EPE 8 nm 8.5 nm 8.6 nm

Table 9. The total vertices of the center flash unit results after applying three algorithms.

Algorithm 1 Algorithm 2 Algorithm 3
Total vertices of center flash unit 1 result 638 512 446
Total vertices of center flash unit 2 result 716 380 332
Total vertices of center flash unit 3 result 550 364 318

If the deviation value of * D’ in Eq. (19) is less than the spe-
cific value, we conclude that the ILT result is acceptable and
the corresponding loop times are determined. The smaller the
specific value we chose, the better the accuracy of the lithogra-
phy results, while a greater running time of the ILT algorithm
should be taken. A suitable specific value should be selected
to keep a good balance between the running time of the ILT
algorithm and the accuracy of the lithography results. During
the experiments, we set the specific value equal to ‘10°. When
it comes to Algorithm 3, which consists of two phases, we set
two different criteria. In the first phase, as the main target is to
reduce the high-frequency components of the mask effectively
and Ry, (M)’s weight is larger than Ry;s(M)’s weight, we use
deviation values of Ry, (M) in Eq. (16) instead of deviations of
Rgis(M) as the criterion to speed up our new algorithm, as in
Eq. (21).

D = Ry (Msok+1)) — Rw(Mso). (21)

In the first phase of our new algorithm, we should choose
a suitable specific value to keep a good balance between the
running time and the reduction effects of the high-frequency
components. As in Eq. (19), the specific value in Eq. (21) is set
to ‘10°. If the deviation value of D’ in Eq. (21) is less than “10°,
we conclude that the ILT result of the first phase is acceptable
and the corresponding loop times are determined. The criterion
for the second phase is the same as Algorithm 1 and Algorithm
2. All the running time information is shown in Table 7. Note
that the results of Algorithm 3 will be expressed as A+B, where
A stands for the loop times of the first phase and B stands for
the loop times of the second phase.

We also checked the edge placement errors (EPEs) on ev-
ery target edge as the accuracy indicator. The flash unit in the
center of the flash pattern will be checked. The places with dis-
tances from corners shorter than 20 nm are filtered to avoid
corner rounding issues, while the EPE information for other

places is shown in Table 8. The integer means the number
of places whose EPE is within the corresponding range. As
the grid size is 10 x 10 nm?, EPEs less than 5 nm are not
checked.

We used the number of total vertices to measure the com-
plexity of the ILT result. The flash unit in the center of the
flash pattern will be checked. All the information is shown in
Table 9.

Figures 5—7 show the ILT results of the flash patterns and
their corresponding simulation results. Figure 8 shows the ILT
results of the flash units in the center of the flash patterns.

As shown in Table 7, our new algorithm consists of two
phases, so it takes more time to run our new algorithm than the
other two algorithms. However, we are concerned more about
the complexity reduction effect here, so deviations in running
time are still acceptable. We can also use more advanced ma-
chines or parallel calculations to improve the running time of
our new algorithm.

From Table 8, not only is the largest EPE of our new al-
gorithm and ILT algorithm with LWP close together, but also
the number of places whose EPE is within the corresponding
range are equal to each other. By this, we can conclude that the
accuracy of our new algorithm and ILT algorithm with LWP is
at the same level.

From Table 9, for the results of the ILT algorithm with
LWP, although the total vertices are much less than the results
of the ILT algorithm without complexity penalty term, there are
many irregular patterns, hence the results are still not quite ac-
ceptable. When it comes to our new algorithm, compared with
the ILT algorithm with LWP, the total vertices are reduced by
12.89% for flash unit 1, 12.63% for flash unit 2 and 12.64%
for flash unit 3, while the patterns of the ILT results are more
regular. Along with more experiments applied on other com-
plicated mask samples, our new algorithm is further proven to
reduce mask complexity effectively.
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Table 10. Three expressions of Haar groups based on reference point P(a’, ).

Expression 1 Expression 2

Expression 3

mQi'+a’,2j" +b')

mQi'+a',2j" +b' +1)
mQi'+a +1,2j' +0b)
mQi'+a’ +1,2j +b"+1)

m(2i’+2i”—|—a’—2i”.2j/+2j”+b’—2j”)
mQi’ +2i" +a’ —2i",2j + 2" +b —2j" +1)
mQi’ 4+ 2i" +a’' —2i" + 1,2 +2j" + b —2j")
mQi"+2i" +a’ —2i" +1,2j" +2j" + b —2j" +1)

mQ2i +a,2j +b)

m@i +a,2j +b+1)
mQ2i +a+1,2j +b)
mQi+a+1,2j +b+1)

Table 11. The results of @, b, i and j in expression 3 of Table Al fora = a’ —2i”,2i =2i' +2i",b=b"—2j",2j =2j' +2;".

Values of a’, b’ fromP(a’, b’)

Values of 2i”,2j" selected by ourselves

Results of @, b, i, j

a’ =0orl 2i" =0 (a=0,0<2i<U—-2or(a=1,0<2i <U-3)
b =0orl 2j"=0 b=0,0<2j<V-2or(b=1,0<2j <V -3)
a =0orl 2i" =0 @=0,0<2i<U—-2or(a=1,0<2i <U-3)
b >=2 2j" =b"or (b’ —1) b=00<2j<V-2or(b=1,0<2j <V -3)
a >=2 2i" =d' or(a’ —1) @=0,0<2i <U—-2or(a=1,0<2i <U-3)
b =0orl 2j" =0 b=00<2j<V—-2o0r(b=1,0<2<V-=3)
a >=2 2i" =a’ or(a’ —1) @=0,0<2i<U—-2or(a=1,0<2i <U-3)
b >=2 2" =b"or (b’ —1) b=0,0<2j<V-2or(b=1,0<2j <V -3)
Table 12. Haar groups based on reference point P (3, 0).

m(0,0) m(0,1) m(0,2) m(0, 3) m(0, 4) m(0, 5) m(0, 6)

m(1,0) m(1,1) m(1,2) m(1,3) m(1,4) m(1,5) m(1,6)

m(2,0) m(2,1) m(2,2) m(2,3) m(2,4) m(2,5) m(2,6)

m(3,0) m(3,1) m(3,2) m(3,3) m(3,4) m(3,5) m(3,6)

m(4,0) m(4,1) m(4,2) m(4,3) m(4,4) m(4,5) m(4, 6)

Table 13. Four unique Haar group results based on reference points P (0,0), P(0,1), P(1,0), P(1,1).

P(a, b) selected Values of a, b from P(a, b)

Haar group results based on reference point P(a, b) with different values of i and j

P(0,0) a=00b=0
P(0.1) a=00b=1
P(1,0) a=1b=0
P(,1) a=1b=1

m(2i,2/),m(2i,2j + 1).mQi + 1,2j).mQi + 1,2j + 1)

mQ2i,2j +1),m2i,2j +2).mQ2i + 1,2j +1),mQ2i +1,2j +2)

mQi +1,2j),mQ2i + 1,2j + 1).m(2i +2.2j).mQ2i +2.2j + 1)

mQi 4+ 1,2 +1).mQi + 1,2j +2),mQ2i +2.2j +1).mQ2i +2.2j +2)

6. Conclusions

In this paper, a new complexity penalty term called the
global wavelet penalty is developed, and the merits of both the
global wavelet penalty and the local wavelet penalty are incor-
porated in our new algorithm. From the experimental results,
compared with the ILT algorithm with LWP, the total vertices
are reduced by 12.89% for flash unit 1, 12.63% for flash unit 2
and 12.64% for flash unit 3, while the accuracy of the lithog-
raphy results remain at the same level. The results therefore
prove that our new algorithm is significantly effective in de-
creasing the complexity of the so-called ILT raw mask, which
is the fundamental practical mask design for pushing existing
90 nm lithographic technology into manufacturing 65 nm or
even smaller features.

Appendix A: Haar groups based on different ref-
erence points

Here we detect all the possible Haar group results based
on different reference points on matrix M with size U*V. It
can be proved that no matter how the reference point P(a, b)
is selected, there are only four unique Haar group results based
on reference points P (0, 0), P(0, 1), P(1,0) and P(1, 1), re-
spectively.

We use P(a’,b’) as an ordinary reference point and the

Haar groups based on P(a’, b’) are shown as expression 1 and
expression 2 in Table Al, where a’,b’ € N,i’,j' € Z,—a’ <
2i’ < U-2—a’,—b" <2j’ < V—-2—b'. Werewrite expression
2 to expression 3 in Table A1, wherei”, j” € N,a = a’—2i",
2i =2i' +2i",b=b'—2j",2j =2j' +2j".

We calculate the values of a, b,i and j in expression 3 of
Table Al according to the values of a’ and b’ from P(d’, b’),
and the values of 2i” and 2" selected by ourselves. We take
P(0, 3) as an example to demonstrate how to calculate the val-
ues of a,b,i and j. Here a’ = 0, b’ = 3. We choose 2i” =0,
2j"” =2,whichleadstoa =a’—2i" =0,b =b"—2j" = 1.
As2i = 2i' +2i",2j = 2j' + 2j” while 0 < 2i’ < U —2,
-3 <2)/ £V -2-3wehave 0 < 2i < U — 2,
0 < 2j < V — 3. In this way all the values of @’ and b’ from
P(d’,b") are detected and the corresponding values of 2i” and
2j" are selected to calculate the results of @, b,i and j, as in
Table A2.

There is an example of Haar groups based on reference
point P(3,0) on a matrix with a size of 5*7. Here a’ = 3,b’ =
0,U =5,V =7.Theresults of a, b,i and j can be expressed
as;a =1,b=0,0 < 2i <20 <2j <5. Wecan choose
2i =0,2,2j =0,2, 4, while the Haar group results based on
P(3,0) are shown in Table A3.

Note that no matter how the reference point P(a’,b’) is
selected, we can select corresponding values of 2i” and 2",
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which lead to four unique results of @, b,i and j in Table A2.
Applying values of a,b,i and j to expression 3 of the Haar
groups in Table A1, we can get four unique Haar group results
based on corresponding reference points P (0, 0), P(0, 1), P(1,
0), P(1, 1), respectively, as in Table A4, where 0 < 2i <
U—-2—-a,0<2j <V —2—b. These four unique Haar group
results are chosen to demonstrate the forming of GWP.
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