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Neurocomputing van der Pauw function for the measurement of a semiconductor’s
resistivity without use of the learning rate of weight vector regulation
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Abstract: Van der Pauw’s function is often used in the measurement of a semiconductor’s resistivity. However, it
is difficult to obtain its value from voltage measurements because it has an implicit form. If it can be expressed as
a polynomial, a semiconductor’s resistivity can be obtained from such measurements. Normally, five orders of the
abscissa can provide sufficient precision during the expression of any non-linear function. Therefore, the key is to
determine the coefficients of the polynomial. By taking five coefficients as weights to construct a neuronetwork,
neurocomputing has been used to solve this problem. Finally, the polynomial expression for van der Pauw’s function
is obtained.
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1. Introduction

Van der Pauw’s function, f , is often used in the measure-
ment of a semiconductor’s resistivity Rs

Œ1; 2�:

Rs D
�

ln 2

v1 C v2

I
f

�
v1

v2

�
; (1)

where v1 and v2 are the measured voltages, I is the injection
current, and f is van der Pauw’s function:

.v1=v2/ � 1
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�
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; v1 > v2: (2)

However, it is difficult to obtain values of f from anymea-
sured values of v1=v2 because it has an implicit form (Eq. (2)).
If we express it as a polynomial:

f D 1 C w1.v1=v2/ C w2.v1=v2/2
C w3.v1=v2/3

C w4.v1=v2/4
C w5.v1=v2/5:

The material’s resistivity will be obtained from the mea-
surement values (i.e. v1=v2/, by using Eq. (1):

Rs D
�

ln 2

v1 C v2

I

�
1 C w1.v1=v2/ C w2.v1=v2/2

Cw3.v1=v2/3
C w4.v1=v2/4

C w5.v1=v2/5
�

:

Normally, five orders of the abscissa, x, provide sufficient
precision to express any non-linear function. Therefore, the key
is to obtain the coefficients,wi . Neurocomputing has been used
to solve this problem.

2. NeurocomputingŒ3; 4�

The five-order polynomial can be expressed as y D w1xC

w2x2 C w3x3 C w4x4 C w5x5 for the van der Pauw function.
Here y D f � 1 and x D v1=v2. If the polynomial is correct,
wi will be optimized. Therefore, we search for such wi while
satisfying x D 1 to 10, which is known as the global reversal
development of van der Pauw’s function.

2.1. Sampling

We obtain approximate values of van der Pauw’s function,
f , at several points v1=v2 (i.e. x), relying on local reversal
development. The results are shown in Table 1 and taken as
the so-called samples for neurocomputing. Here 10 samples
are sufficient for the global reversal development of van der
Pauw’s function. Such sample values of van der Pauw’s func-
tion are denoted as y�

j to discriminate yj , where j D 1 to 10.
The former are expectated values whereas the latter are com-
puted values: yj D

P5
i wi x

i
j .

The object of the neurocomputing is to regulate wi such
that yj tends to each known sample y�

j respectively.

2.2. Neuronetwork

Figure 1 shows a neuronetwork comprising five weights,
wi .i D 1, 2, � � � , 5). The input layer comprises five weights,
i.e. the vector W , with the corresponding x1; x2; x3; x4; x5.
The hidden layer comprises xj , which are points, j , on ab-
scissa, x. The output layer comprises different computed yj .
The samples are y�

j , which are the values of van der Pauw’s
function at xj . The errors are the differences between yj and
y�

j . The output from the hidden layer is Y D XT W , i.e.
W D .w1; w2; w3; w4; w5/T ,
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Table 1. The approximate values of f at several v1=v2, relying on local reversal development (f1 D 1 when v1=v2 D 1).
v1=v2 2 ˙

0.00001
3 ˙

0.00001
4 ˙

0.00001
5 ˙

0.00001
6 ˙

0.00001
7 ˙

0.00001
8 ˙

0.00001
9 ˙

0.00001
10 ˙

0.00001
f 0.96028 0.90876 0.86092 0.82061 0.789283 0.76297 0.738119 0.71500 0.699259
f � 1 �0:03972 �0:09124 �0:139708 �0:17939 �0:210717 0.23703 �0:261882 0.28500 �0:300741

Fig. 1. The constructed neuronetwork.

Y D .y1; y2; y3; y4; y5; y6; y7; y8; y9; y10/T
D

2666664
y1

y2

:::

y9

y10

3777775

D :

26666664
x1 x2

1 x3
1 x4

1 x5
1

x2 x2
2 x3

2 x4
2 x5

2

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

x9 x2
9 x3

9 x4
9 x5

9

x10 x2
10 x3

10 x4
10: x5

10

37777775

266664
w1

w2

w3

w4

w5

377775 : (3)

For example, y1 D w1x1Cw2x2
1 Cw3x3

1 Cw4x4
1 Cw5x5

1 ,
y10 D w1x10 C w2x2

10 C w3x3
10 C w4x4

10 C w5x5
10.

The arrows in Fig. 1 indicate the mathematical relation-
ships (in accordance with Eq. (3)). This neuronetwork can also
be expressed as a simple symbol, which is shown in the first
row of Fig. 2.

2.3. Errors and their variations

There are 10 errors Ej D yj � y�
j (j D 1 to 10) corre-

sponding to 10 samples that arise from arbitral weight vector

Fig. 2. Four symbols for different equations.

W : Ej D yj � y�
j D

5P
i

wi x
i
j (j D 1 to 10). Variations in the

weights will induce corresponding variations of errors:

ıEj .k/ D ı.yj � y�
j / D

5X
i

ıwi x
i
j ; j D 1; 2; � � � ; 10: (4)

In a manner similar to Eq. (3), Equation (4) can also be
realized via a neuronetwork. A difference as compared to the
neuronetwork of Fig. 1 is found in the input layer comprising
ıwi and the output layer comprising ıEj ; it should be noted
that the hidden layer is the same in both cases. It can be sim-
plified as another symbol, shown in the second row of Fig. 2.

2.4. Selection of the variations of weights

2.4.1. Prevailing weight trainingŒ3; 4�

Normally, weight training any neural network relies on a
learning rate that will efficiently guide the weight vector W to
a location that yields the desired network performance. There
have been many different approaches to solving this problem.
A commonly encountered goal is to move W to a position that
minimizes some particular neural network performance func-
tion, such as the mean square error deviation. It is desirable to
select aW vector so that the mean square error of y when com-
pared with y0 is minimized. In other words, the goal is to find
an optimum W that minimizes the mean square error. The half
sum of the square error is

F.w/ D
1

2

1

10

10X
j D1

ˇ̌
Ej

ˇ̌2
D

1

2

1

10

10X
j D1

 
y0

j �

5X
i

wi x
i
j

!2

:

(5)
The vector –rF points the direction in which F.w/ will

decrease at the fastest possible rate. If –rF could be calculated
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or estimated, the weight vector will be moved in the “ down-
hill” direction by a small amount. The problem is estimating
rwiF

Œ3; 4�.

rwiF.w/ D
1

10

10X
j D1

.y0
j � yj /rw

 
�

5X
i

wi x
i
j

!

D
1

10

10X
j D1

.y0
j � yj /.�xi

j /: (6)

If the error, yj � y0
j , is denoted by Ej then

rwiF.w/ D �
1

10

10X
j D1

Ej xi
j D �

1

10

10X
j D1

Ej xi
j : (7)

Thus a weight updated lawŒ3; 4� will converge to a correct
W from any starting W0 value:

ıwi D wi .k C 1/ � wi .k/ D �˛i

1

10

10X
j D1

Ej xi
j ; (8)

˛i D �ıwi

0@ 1

10

NX
j D1

Ej xi
j

1A�1

; (9)

where ˛ is a positive constant known as the learning rateŒ3; 4�.
However, ˛ is not easily calculated and is typically selected
by trial and errorŒ3; 4�. In general, if ˛ is too large, the weight
vector will not converge and, if ˛ is too small, convergence
will take an unduly long period of time.

There are some common variants of the above equation.
The momentum variant is given by the following equation
W.k C 1/ D W.k/ C .1 � ˛/Ej C �ŒW.k/ � W.k � 1/�,
where the value of � is considerably larger than ˛, such as be-
ing chosen as 0.9 (typically, 0.01 < ˛ < 10)Œ3; 4�.

Although there are a great many learning laws that can ad-
just the weight vector W , a difficulty exists in selecting the
learning rate ˛ and the momentum variant value �. Therefore,
a problem arises, which is whether or not the choice of the
learning rate can be simplified in neurocomputing. The answer
is positive. This paper addresses simplifying and solving this
problem.

2.4.2. The difficulties encountered by the prevailing weight
training

Now consider the denominator in the right-hand side of
Eq. (9), then

i D 1;

10X
j D1

Ej xj D E1x1 C E2x2 C � � � C E10x10;

i D 2;

10X
j D1

Ej x2
j D E1x2

1 C E2x2
2 C � � � C E10x2

10;

: : :

i D 5;

10X
j D1

Ej x5
j D E1x5

1 C E2x5
2 C � � � C E10x5

10: (10)

If x10 D 10, x1 D 1, then x5
10 D 105. Thus E1 C 8E2 C

243E3 C 1024E4 C 3125E5 C � � � C 105E10 is quite different
fromE1 C2E2 C3E3 C4E4 C5E5 C� � �C10E10 respectively
for ˛5 and ˛1. A polynomial of any non-linear function, there
is jw5j � jw1j (as can be appreciated from Section 3), so there
should be jıw5j � jıw1j to move weights a small step. So val-
ues of j˛5j are much lower than values of j˛1j. They differ from
each other by at least three orders. Therefore, the learning rate,
˛, is difficult to select from Eq. (9). Additionally, Equations
(4) and (8) give

ıE1 D x1ıw1 C � � � C x5
1ıw5

D �
1

10

0@˛1

10X
j D1

Ej xj C � � � C ˛5

10X
j D1

Ej x5
j

1A ;

ıE10.k/ D x10ıw1 C � � � C x5
10ıw5

D �

0@˛1

10X
j D1

Ej xj C � � � C ˛5104

10X
j D1

Ej x5
j

1A :

So,

@.ıE1/=@˛1 W @.ıE10/=@˛1 W @.ıE1/=@˛5 W @.ıE10/=@˛5 D

1

10

10X
j D1

Ej xj W

10X
j D1

Ej xj W
1

10

10X
j D1

Ej x5
j W 104

10X
j D1

Ej x5
j :

The influences of the learning rates upon the respective
errors are quite different, which emphasizes the difficulties in
choosing learning rates and their variations. References [3, 4]
have pointed out: typically, 0.01 < ˛ < 10, with a value of 0.1
often being a starting value. Choosing and adjusting ˛ for train-
ing samples is an art that neurocomputing practitioners need to
learn. If it takes 103 times to choose a correct learning rate for
one weight, then it would take 1010 to 10 15 times to choose the
learning rates for five weights. Therefore, this case is only ap-
propriate to the following neurocomputing expression, which
is different from Eq. (3):

2666664
y1

y2

:::

y9

y10

3777775 D :

266666664

x
.1/
1 x

.2/
1 x

.3/
1

x
.1/
2 x

.2/
2 x

.3/
2

� � � � � � � � �

� � � � � � � � �

x
.1/
9 x

.2/
9 x

.3/
9

x
.1/
10 x

.2/
10 x

.3/
10

377777775

266664
w1

w2

w3

377775 ;

where .i/ represents different physical quantities, such as tem-
peratures, pressure, etc. Normally, the number of physical
quantities involved is lower than five. Therefore, .i/ is not the
power on xj , but a symbol, representing some physical quan-
tity. Thus,

PN
j D1 Ej x

.i/
j are the same for one wi and the learn-

ing rate is easily chosen because the influence of the learning
rates on the errors to the samples depends upon the ratio of the
sample’s values x

.i/
j for different physical quantities .i/:

@.ıE1/=@˛1 W @.ıE10/=@˛1 D x
.1/
1 W x

.1/
10 ;

@.ıE1/=@˛3 W @.ıE10/=@˛3 D x
.3/
1 W x

.3/
10 ;
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@.ıE1/=@˛1 W @.ıE1/=@˛3 D

x
.1/
1

NX
j D1

Ej x
.1/
j W x

.3/
1

NX
j D1

Ej x
.3/
j ;

@.ıE10/=@˛1 W @.ıE10/=@˛3 D

x
.1/
10

NX
j D1

Ej x
.1/
j W x

.3/
10

NX
j D1

Ej x
.3/
j :

If x
.i/
j is normalized for different physical quantities .i/ ,

for example, x.i/
1 D 0:1; � � � ; x

.i/
10 D 1; then x

.1/
1

NP
j D1

Ej x
.1/
j D

x
.3/
1

NP
j D1

Ej x
.3/
j and x

.1/
10

NP
j D1

Ej x
.1/
j D x

.3/
10

NP
j D1

Ej x
.3/
j . So,

@.ıE1/=@˛1 W @.ıE1/=@˛3 D

x
.1/
1

NX
j D1

Ej x
.1/
j W x

.3/
1

NX
j D1

Ej x
.3/
j D 1;

@.ıE10/=@˛1 W @.ıE10/=@˛3 D

x
.1/
10

NX
j D1

Ej x
.1/
j W x

.3/
10

NX
j D1

Ej x
.3/
j D 1:

It can be appreciated from the last two expressions above
that ˛1 D ˛2 D ˛3 are the same and are independent of the
physical quantities involved. In this case, prevailing weight
training techniquesŒ3; 4� are appropriate for easily choosing a
universal learning rate by trial and error or empirically using
the above expressions. However, we believe that it is difficult
to choose a universal expression for the learning rate (Eq. (9))
for different weights in the case of polynomial matching.

2.4.3. Adopting an universal expression of the variations of
weights

Therefore, we propose to abandon the above types of
weight training that rely on selecting learning rates in favor of
adopting a universal expression for the variations of weights
for global reversal development for any non-linear function.

From Eq. (4), it can be seen that the variations of each error
are dependent upon the variations of weights. Whether errors
will be reduced depends upon the selection of the magnitude
of the variations of weights. We select the ıwi as follows:

ıWi D �
1

m

1

xi
m

(
Ei C

1

m

"
.1 � ık;j /

mX
kD6

jEkj

#
C ıkj Ek

)
;

i D 1; 2; � � � ; 5; j D 1; 2; � � � ; m; k D 6; 7; � � � ; m;

(11)

where m is the maximum number of nodes in the hidden layer,
i.e. number of samples, a maximum of five weight components

(coefficients of the polynomial) is selected and j and k are
the number of nodes. Ei are the deviations of the computing
function Y D XT W relative to the expectations Y 0 for points
j D i D 1 to 5 and Ek are for points j D k D 6 to m

respectively on the abscissa, the i of xi
m is the power of xm,

ıwi denotes variation of wi . The number m in xi
m is required

for a hidden layer with m nodes. Now introducing each ıwi

into Eq. (4) and choosing m D 10, i.e. the numbers of samples,
one obtains:
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� � �
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: : :
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ıE8 D �
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C10E8 C jE9j C jE10j/
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: : :

ıE10 D �
1

10

�
E1 C E2 C E3 C E4 C E5 C

1

10
Œ.1 C 1

C 1 C 1 C 1/� .jE6j C jE7j C jE8j C jE9j

C 10E10/g :

(12)

The above equations are independent of each other without
any coupling. If all Ej are known, any ıEj will be directly
obtained, being no need to go through the hidden layer, which
is in contrast to Eq. (3).

This is a key advantage of Eq. (11). The second advantage
is its universality for different orders and ease of compiling the
program.

2.5. Error iteration reducing

Errors can be reduced by relying on iterations with their
variations, depending on the magnitude of variations. The
principle can be essentially demonstrated via three examples,
which are given below.

2.5.1. One-dimensional (sample) error iteration reduction

The relationship between errors for successive iterations
can be represented as E.k C1/ D E.k/CıE.k/ and ıE.k/ D

�nE.k/ during iterations of the error E. If n D 0.1, 0.25, 0.5,
then E will decrease to 0.729, 0.422, 0.125 respectively after
three iterations and will tend to zero after many iterations. If
n D 1, then E will immediately decrease to zero after one
iteration. If n D 1.2, 1.4, 1.8, then E will assume negative val-
ues (�0:2, �0:4, �0:8) respectively after one iteration, while
converging to �0:008, �0:064, �0:0512 after three iterations
and will tend to zero after many iterations. If n D 2, then E

will oscillate, taking either values of �E or CE for successive
iterations. If n is larger than 2, then E will diverge.

2.5.2. Two-dimensional (sample) error iteration reduction

The relationship between errors for successive iterations
can be expressed as E1.k C 1/ D E1.k/ C ıE1.k/, E2.k C

1/ D E2.k/CıE2.k/ and ıE1.k/ D �
1
2
[.E1.k/C 1

2
E2.k//�;

ıE2.k/ D �
1
2
[E2.k/C 1

4
E1.k/� during iterations of the error

E. After one time iteration, it will be respectively obtained that
E1(1) D

1
2
E1 �

1
4
E2, E2(1) D

1
2
E2 �

1
8
E1 and after two times

iterations E1(2) D
9

32
E1 �

3
16

E2, E2(2) D
9

32
E2 �

2
16

for an
initial E1 and E2. It can be appreciated that each error reduces

progressively depending upon the ratio factors (here �1/2 as
an example) taken for ıEi in two-dimensional error iteration
reduction.

2.5.3. Six-dimensional (sample) error iteration reduction

According to Eq. (11), we select the following variation of
weights:
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;

i D 1; 2; � � � ; 5; j D 1; 2; � � � ; 6: (13)

Substituting it into Eq. (4), gives the following equations:
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: : :
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;

ıE6 D �
1

6

�
E1 C E2 C E3 C E4 C E5 C

5

6
E6

�
: (14)

Equation (14) is independent and uncoupled. This is the
foundation of performing an error iteration reduction. Each
variation of error for k iterations, ıEj .k/, can be directly ob-
tained for all errors by solving these independent equations
(14). A symbol can represent solving these equations (14 or
12): Ej .k/ ! ıEj .k/, here the hidden layer is deleted. If we
use error iteration reduction: Ej .k/ ! ıEj .k/, and Ej .k C

1/ D Ej .k/ C ıEj .k/; each error can tend gradually to zero.
Tables 2 and 3 show the error reductions during the iterations
for 6 samples with different initial errors. It should be noted,
however, that there is a slight oscillation. Here the error iter-
ations do not involve any weights. The calculations are per-
formed independently. We call this “error iteration reduction”.
This is the third advantage of using Eq. (11).
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Table 2. The magnitude of each Ej .j D 1, 2, � � � ; 6) after several iterations for the first case.
Iteration
time

0 1 5 10 20 30 50 100 1000 3000 8000

E1 �5 �3:5490 �2:9211 �1:4838 �1:5692 �1:3019 �0:4063 �0:0834 �0:0145 �0:0027 �3:9569

(10�5/

E2 �4:2 �0:7630 �0:7395 1.3689 �0:2516 0.1722 0.8099 0.4708 0.0410 0.0077 1.1558
(10�4/

E3 �3:3 2.9344 0.0167 2.2428 �1:5294 �0:2861 �0:5830 �0:6787 �0:2143 �0:0398 �5:9355

(10�4/

E4 �2:5 7.7444 �1:9528 1.0640 �3:2411 0.1222 �2:0059 �0:8100 0.2748 0.0512 7.6777
(10�4/

E5 �1:2 14.8214 �7:4114 �0:1790 0.7284 7.6156 1.0679 1.1813 �0:1843 �0:0343 �5:1036

(10�4/

E6 0 24.3000 5.9695 17.0460 30.1814 17.5932 3.8469 0.2386 0.0056 �4:2807

(10�4/

�2:0573

(10�5/

Table 3. The magnitude of each Ej .j D 1, 2, � � � ; 6) after several iterations computing for the second case.
Iteration
time

0 1 5 10 20 30 50 100 1000 3000 8000

E1 0 �0:1970 �0:9149 �0:8242 �0:3012 �0:2235 �0:1513 �0:0148 �3:8821

(10�4/

�7:0384

(10�5/

�1:0784

(10�6/

E2 1.2 0.4629 �1:0120 �0:8148 0.0863 �0:0047 0.0374 0.0785 0.0015 2.8928
(10�4/

4.2720
(10�6/

E3 2.5 0.4695 �1:0694 �0:9412 0.1154 �0:2706 �0:1371 �0:0644 �0:0064 �0:0012 �1:7835

(10�5/

E4 3.3 �1:5039 �0:7361 �1:4164 �0:5398 �1:0449 �0:5792 �0:2778 0.0099 0.0018 2.7523
(10�5/

E5 4.2 �6:0083 2.4410 �0:9201 �0:7443 �0:6726 0.1831 0.2895 �0:0038 �7:0469

(10�4/

�1:0625

(10�5/

E6 5 �18:050 15.0960 2.2149 �0:6972 �1:1066 �0:8653 �0:0465 0.0047 8.6666
(10�4/

1.2927
(10�5/

2.5.4. Ten-dimensional (sample) error iteration reduction

As per the six dimensional case above, if we use error iter-
ation reduction: Ej .k/ ! ıEj .k/, and Ej .k C 1/ D Ej .k/ C

ıEj .k/, all ten errors will progressively tend to zero even
though there is a minor amount of oscillation. Here Ej .k/ !

ıEj .k/ represents a solution to uncoupling Eq. (10). For the
sake of brevity, we do not present the iteration details but show
only the results for the weight optimization in Section 3.2.

3. The neurocomputing course

3.1. Two computing flows

Now we consider the computing course. Figure 3 shows
the computing flow of the so-called error iteration reduction.
Firstly, any arbitral Wi will be imputed. The subscript t , such
as 1, 2, : : :, atWit indicates t-th computing iteration forWi .Wi1

represents the initial weights for the first computing iteration,
xj represents the hidden layer, composed of ten points (nodes)
on abscissa x, yj1 is the output from nodes j in the first neuro-
computing iteration. The deviations of yj1 to samples y�

j , i.e.
errorsEj1, are equal to yj1 �y�

j . The symbolEj ! ıEj repre-
sents a solution to uncoupling Eq. (12). After the first comput-
ing iteration, the hidden later is deleted because each ıEj can
be directly computed from different Ej according to Eq. (12).

Figure 3 shows another computing flow of so-called
weight iteration optimization: wi .k C 1/ D wi .k/ C ıwi .k/.
These two computing flows are coupled to each other by

Eq. (11) of ıwi , which are associated with all errors Ej . The
iterations are repeated many times until each Ej < " (for ex-
ample, 0.0001). At the end, they all gradually tend to zero
with each wi approaching to an optimum. The object is to ob-
tain the optimum weights without any deviations Ej to Y � D

XT W 0. The compilation of a computer program to implement
the above is simple because the computing formula ıwi .k/ is
its universality, being appropriate to any quantities of orders
without a need to choose learning rates empiricallyŒ3; 4�.

3.2. Selecting the initial weights before iterations

Consideration ought to be given to selecting the initial
weights in advance of commencing the iterations.

Convergence will take a long time if the initial weights are
selected too arbitrarily (as can be appreciated from Tables 2
and 3). In particular, ıw5 may be very small (X5

m D 105 is
very significant in the denominator) in each iteration step of
weight regulations. Guidance for selecting the initial weights
for the iterations is given below:

The van der Pauw’s function can be expressed as the fol-
lowing polynomial:

f D 1 C w1x C w2x2
C w3x3

C w4x4
C w5x5

C �: (15)

Setting w2 D 0:1˛w1, w3 D 0:1ˇw2, w4 D 0:1w3,
w5 D 0:1ıw4 and introducing them into Eq. (15), gives f D

1 C w1x C 0:1˛w1x2 C 0:12˛ˇw1x3 C 0:13˛ˇw1x4 C

0:14˛ˇıw1x5.
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Fig. 3. Two computing flows of error iteration reduction and weight optimization.

Fig. 4. Each weight varies with the iteration times to arrive at its optimum.

When x D 1, f1 D 1 C w1.1 C 0:1˛ C 0:12˛ˇ

C 0:13˛ˇ C 0:14˛ˇı/. Therefore, ˛ D 10. f1�1
w1

�

1/= f1 C 0:1ˇ Œ1 C 0:1.1 C 0:1ı/�g � �11, where f1 D 1

and setting ˇ D  D ı D �1 as approximate values.
When x D 2, we have had f2 Š 0:9604, which is ob-

tained by local reversal development (see Table 1) and f2 D

1 C 2w1 f.1 � .1:1/2 C .0:11/4 � .0:011/8 C .0:0011/16g D

w1.�1:66/. Therefore, w1 D .f2 � 1/=.�1:66/ D 0:0384.
Due to ˇ D  D ı D �1 being approximate values, five

approximate weights can be obtained as the beginning values
to initiate the neurocomputing:

w1 D 0:0384; w2 D �0:04224; w3 D 0:004224;

w4 D �0:0004224; w5 D 0:00004224: (16)

Figure 4 illustrates the variation of each weight with the
number of iteration to arrive its optimum by taking Eq. (11) to
adjust the weight vector, relying on the error iteration reduc-
tion. It can be seen that the iteration times are reduced because
the initial weights are properly selected.

Thus, van der Pauw’s function can be expressed as the fol-
lowing polynomial:

f D 1 C 0:0323772171x � 0:0403767815x2

C 0:0085788146x3
� 0:0007769267x4

C 0:0000260362x5;

x D v1=v2: (17)
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3.3. Comparison between different methods

The values of van der Pauw’s function at v1=v2 D 1, 2, � � � ,
10 for Eq. (17) are close to the sample values shown in Table 1.
The polynomial expression for van der Pauw’s function can
also been obtainedŒ5� using a normalizedmethod of polynomial
matching for the non-linear signalŒ6�:

f D 1 C 0:03237715x � 0:04037679x2
C 0:00857882x3

� 0:00077693x4
C 0:00002604x5;

x D v1=v2: (18)

Equations (17) and (18) are substantively the same. How-
ever, the neurocomputing is more accurate because there are
only five samples for the latterŒ5�.

4. Conclusion

It is feasible to take:

ıWi D �
1

m

1

xi
m

(
Ei C

1

m

"
.1 � ık;j /

mX
kD6

jEkj

#
C ıkj Ek

)

to adjust a weight vector. Relying on error iteration reduction,
coupled by ıwi , each weight will converge to an optimum
value with a small magnitude of oscillation from a suitable
starting value.
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