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Abstract : A complete closed2loop third2order s2domain model is analyzed for a f requency synthesizer. Based on the

model and root2locus technique , the procedure for parameters design is described ,and the relationship between the

process ,voltage ,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation

margin is proposed for stability compensation. Furthermore ,a simple adjustable current cell in the charge pump is

proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total varia2
tion. A fully integrated f requency synthesizer f rom 1 to 1105 GHz with 250k Hz channel resolution is implemented to

verify the methods.
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1 　Introduction

Monolit hic f requency synt hesizers based on

charge p ump PLL ( CPLL ) are p revailing in mod2
ern communication systems. Loop performances ,

such as stability ,p hase noise (or jit ter) ,and switc2
hing speed , are important design criteria and dis2
cussed in many p ublications[ 1～6 ] . Synt hesizer de2
sign is a t radeoff p rocess to derive t he parameters

according to specifications. Unfort unately ,current ,

resistor , and capacitor always vary with p rocess ,

voltage ,and temperat ure ( PV T) . VCO gain is al2
ways highly nonlinear . Variation and nonlinearity

tend to unstabilize the loop ,especially in st rict con2
ditions. In order to have stability ,one way is to sac2

rifice performance of the p hase noise and sp ur level

suppression. The better methods are to use config2
urable current to compensate t he change of division

ratio [7 ] and nonlinearity of VCO gain[ 4 ] . However ,

t hese met hods are of some complexity and not able

to compensate for all variation factors.

A CPLL based f requency synt hesizer is inher2
ently discrete2time. Fortunately , accurate z2domain

models ,state space analysis[8 ,9 ] ,and imp ulse2invar2
iant t ransformation[ 10 ] ,have proven t hat if t he loop

bandwidth is less t han 1/ 20 of t he reference clock ,

s2domain model p redict s t he same behavior as z2do2
main models. As a result , s2domain model is also

suitable for a CPLL f requency synt hesizer . Tradi2
tionally ,closed2loop s2domain model is always sim2
plified into second order [1 ,8 ] . However , t he act ual
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loop is third order or even fourt h order . Open2loop

s2domain model is discussed in t he t hird order [2 ] .

Alt hough an open2loop s2domain model is simple

for analysis , t he roughly defined p hase margin is

indirect and not able to accurately describe the

closed2loop performance and predict t he effect of

t he parameters’PV T variation. The complete anal2
ysis on t he closed2loop t hird2order s2domain model

is still absent up to now.

In t his paper , t he complete analysis on the

closed2loop t hird2order s2domain is performed to

derive t he design procedures for loop parameters.

The effect s of t he parameters’PV T variation on

t he stability is quantitatively analyzed wit h t he aid

of t he root locus technique. An adjustable current

cell in t he charge p ump is p ropo sed to realize the

damping factor cont rol to compensate t he total var2
iation of t he parameters ,which is based on t he vari2
ation analysis. A novel cross2switched VCO wit h

linear gain is also adopted to reduce t he total varia2
tion.

2 　Closed2loop third2order s2domain a2
nalysis and loop parameters

2. 1 　Closed2loop third2order transfer f unction anal2
ysis

　　 In t he typical CPLL f requency synt hesizer

with continuous2time loop filter ,as shown in Fig.

1 ,t he open loop t ransfer f unction is

Ho ( s) =
KCP KVCO

N
×Z(s)

s
(1)

where KCP is t he gain of p hase detector and charge

p ump , Z( s) is t he impedance of loop filter .

KCP =
ICP

2π
, Z( s) =

b
C1

× s +ωz

s ( s +ωp )
,

ωz =
1

RC1
,ωp = ( b + 1)ωz

Here b is t he ratio between C1 and C2 . The open

loop t ransfer f unction can be rewrit ten as

Ho ( s) = K′ s +ωz

s2 ( s +ωp )
(2)

where K′=
KCP KVCO b

N C1
.

Fig. 1 　Architecture of f requency synthesizer

Closed2loop t ransfer f unctions have been sim2
plified to second order and discussed in Ref . [ 1 ] .

However , t he simplified analysis will miss some

implicit relationship s between the parameters and

performance. The complete closed2loop third2order

t ransfer f unction must be considered as following ,

H ( s) =
N Ho ( s)

1 + Ho ( s)
=

N K′( s +ωz )

s3 +ωp s2 + K′s + K′ωz

=
N K′( s +ωz )

( s2 + 2ζωn s +ω2
n ) ( s +ωp3 )

(3)

whereωn is t he nature f requency ,ζis t he damping

factor ,ωp3 is t he closed2loop single pole.

The relationship of zeros and poles between

open2loop and closed2loop is summarized as

2ζωn +ωp3 = ωp (4)

ω2
n + 2ζωnωp3 = K′ (5)

ω2
nωp3 = K′ωz (6)

According to Eqs. (4)～ (6) ,t he analytical equation

is derived ,

2ζω2
n - ( (4ζ2 - 1)ωz +ωp )ωn + 2ζωpωz = 0 (7)

Supposeωn = mωz ,where m is t he nat ure f requency

factor . Take it into Eq. (7) ,and t hen derive

2ζm2 - (4ζ2 + b) m + 2ζ( b + 1) = 0 (8)

Solving Eq. (8) , m can be expressed as a f unction

of b andζ,i . e. m = m ( b ,ζ) .

From Eq. (4) ,t he t hird pole ωp3 in t he closed2
loop t ransfer f unction can be expressed as

ωp3 = ( b + 1 - 2ζm)ωz (9)

which is of ten neglected by t he second order sim2
plification.
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2. 2 　Loop parameters design

The target of loop parameters design is to a2
chieve t he desirable loop performance. With the

closed2loop analysis , it is possible to design the

damping factor and nature f requency directly. The

nature f requency is always dependent on t he damp2
ing factor ;consequently ,a damping factor could be

set as a target at t he beginning of parameter de2
sign ,for example ,ζ= 1. Capacitor ratio b should al2
so be predefined. On the one hand ,a small b makes

t he pole ωp close to the zero ωz ,and result s in the

low f requency closed2loop pole ωp3 . This can bet ter

filter high f requency noise f rom inp ut and divider ,

and bet ter at tenuate clock injection sp urs f rom the

charge p ump . On t he other hand , b must be larger

t han 8 for stability[8 ] . Then , b might be set to 9 or

10 for t he best possible noise performance at the

beginning.

Taking ωn = mωz and ωp = ( b + 1 ) ωz into

Eqs. (4) and (5) , gain factor K′can be expressed

as

K′= k ( b,ζ)ω2
z (10)

where k ( b ,ζ) is also a f unction of b andζ,it is ex2
pressed as

k ( b ,ζ) = (1 - 4ζ2 ) m2 + 2ζ( b + 1) m (11)

For K′= bICP KVCO / 2πN C1 ,t hen k ( b ,ζ)ω2
z = bICP ×

KVCO / 2πN C1 ,resistor R can be expressed as

R =
2πN k ( b,ζ)

bI CP KVCO
ωz (12)

　　Loop bandwidt hωc is an important parameter .

As mentioned early , s2domain model is accurate in

t he whole bandwidt h only if t he loop bandwidth is

no larger t han 1/ 20 reference f requency[9 ] . Because

it is difficult to design a pret ty low noise VCO in

CMOS technology , it is p referable to have a high

loop bandwidt h. High loop bandwidt h also has the

advantage of a fast switching speed. A good initial

loop bandwidt h is 1/ 25 reference f requency. From

Eq. (2) , let s = jωc and | H ( jωc ) | = 1 , wit h Eq.

(10) ,zero ωz can be calculated as

ωz =
1

n( b ,ζ)
ωc (13)

where n( b ,ζ) is t he f unction of b andζ,too . Until

now ,t he procedure to determine t he loop parame2
ters is

( P. 1) Find KVCO f rom simulation.

( P. 2 ) Select capacitor ratio b and damping

factorζ0 ,t hen calculate m , n ,and k.

( P. 3) Select loop bandwidt h ωc according to

reference clock ,a good start2point :ωc =ωref / 25.

( P. 4) Calculate zero ωz ,ωn ,andωp3 .

( P. 5) Choose charge p ump current ICP , and

dividing ratio N .

( P. 6) Calculate R f rom Eq. (12) ,if R is too

large ,increase the p ump current ICP and recalculate

R until it s value is reasonable.

( P. 7 ) Calculate C1 , C2 , if t he value is too

large ,decrease p ump current ICP ,and go to P. 6.

2. 3 　Parameters variation ,stabil ity ,and margins

Basically ,loop t ransfer f unction changes wit h

N to synt hesize various f requencies. A configurable

charge p ump is used to keep t he ratio N/ KCP to

maintain t he loop performance[7 ] . The undeter2
mined parameters variation still arises f rom

process , temperat ure , and voltage. Traditionally ,

p hase margin optimization is simple and always

used to determine t he loop parameters[2 ] . A prima2
ry p hase margin should be pre2defined for calcula2
tion ,which is usually set to about 50°. However ,

variation of loop parameters changes the p hase

margin. Phase margin optimization technique can2
not p redict how much variation it can tolerate. Root

locus technique could be adopted to illust rate t he

influence of parameters’variation. The parameters

such as ICP , R , C1 , C2 ,and KVCO will vary wit h PV T

variation. What are the influences of t he variation ?

Figure 2 is t he root locus of the loop . Poles

migrate wit h t he factor K’. Point s B , C are t he

boundary to avoid under2damping behavior . To

margin t he loop parameter variation ,for example ,

point A can be selected to identify t he system ,and

t he damping factorζis 1. If t he gain factor K’de2
viates smaller t han t he designed value , poles will

migrate towards point B and it s conjugate pole ,as
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well as t he damping factor becoming smaller . If t he

gain factor K’deviates larger t han t he designed

value ,poles will migrate to point C and t he zero

t hrough the locus , as well as t he damping factor

becoming larger at t he start and t hen smaller af ter

passing around point D. When poles exceed the

boundary ,t he loop might become under2damping.

Fig. 2 　Root locus plot of loop

Wit h designed damping factor ζ0 , rewrite

Eq. (12) to

k ( b ,ζ0 ) =
KVCO ICP bR 2 C1

2πN
(14)

　　Due to the technology , temperat ure ,and volt2
age variation , t he changes of ICP , KVCO , R , C1 , and

C2 will disturb t he closed loop poles. The actual

damping factor result s in :

k ( b ,ζ) =αk ( b ,ζ0 ) =α×KVCO ICP bR 2 C1

2πN
(15)

whereαis named as variation factor . Now consider

t he boundary condition :ζB = 01707 , which result s

αmax and αmin .αmax is t he top boundary of total pa2
rameter variation andαmin is t he bot tom boundary.

For example , if ζ0 = 1 and b = 9 , t hen αmax = 1157

andαmin = 0165 ,and the loop could tolerate a total

35 % parameters variation at least . Variation mar2
gin can be defined as t he minimum of αmax - 1 and

1 - αmin . In fact , t here exist s an optimum variation

margin ,which corresponds to an optimum damping

factorζopt larger t hanζ0 . Due to mat hematical com2
plexity ,optimum damping factor is not discussed

here. For a small b ,ζ0 = 1 is acceptable approxima2
tion for ζopt . Quantitative analysis based on t hird2
order model accurately shows t he effect of parame2
ters variation on t he closed2loop damping factor

and stability. Additionally ,variation margin increa2
ses with b. If t he p redicted variation margin cannot

tolerate t he total maximum PV T variation , t hen b

should be increased for t he large variation margin.

3 　Circuit implementation

3. 1 　Phase detector

Due to t he slow inp ut f requency ,a p hase de2
tector can be implemented wit h t he most pop ular D

flip2flop t ri2state configuration[11 ] . There are dead2
zone elimination delay chain and differential out2
p ut s equalization.

3. 2 　Charge pump with stabil ity compensation cur2
rent cell and loop f ilter

　　A differential charge p ump has bet ter supply

noise rejection performance and p hase noise per2
formance[12 ] . Figure 3 is t he schematic of t he

charge p ump . Due to differential architect ure ,ideal

matched charge p ump and loop filter can eliminate

t he p roblems by clock feed through and charge in2
jection.

However ,t he mismatch always exist s and t he

problems wit h t he mismatch should be considered.

First ,level shif ters are used to reduce the swings of

switch signals to at tenuate t he clock feed t hrough.

Half reduction of swing improves t he performance

of reference sp ur suppression by 6dB. Second ,

channel charge injection f rom switch t ransistors ,

e. g. PM1 and NM1 ,can be at tenuated wit h isola2
tion by sat urated t ransistors ,e. g. PM3 and NM3.

In section 2 ,parameters variation has been an2
alyzed. If t he total variation exceeds t he boundary

of stability ,i. e. (αmin ,αmax ) ,current adjust ment can

take t he loop back to t he stable state. A proposed

double2half adjustable current cell is shown in

Fig. 4. The current cell consist s of four branches ,of
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Fig. 3 　Differential charge pump schematic

Fig. 4 　Proposed current cell with double2half adjust2
ment

which two are ON and two are O FF in default . Ifα

is larger t han αmax , it should decrease t he current

ICP by disable ( nDEC = 0) one current branch to

half the factor α. If αis smaller t hanαmin , t hen in2
crease ICP by enable ( INC = 1) two current bran2
ches to double t he factor . For example , if αmin =

015 ,αmax = 115 ,ΔKVCO / KVCO = 012 ,ΔIc / Ic = 012 ,

ΔR/ R = 012 , and ΔC1 / C1 = 011 , t he worst total

negative variation wit hout adjust ment according to

Eq. (15) is 0137 ,which is belowαmin ,and t he loop

tends to be under2damping. With the current doub2
le adjust ment , t he total variation factor becomes

0174 ,which is acceptable. The similar half adjust2
ment is for t he worst positive variation. The simple

current cell can replace t he t ransistor NM0 and

PM0 in Fig. 3. There is also a complex technique

t hat adjust s current to keep t he ratio ICP / N as N

changes[7 ] . The obvious improvement here is t hat

ext ra variation is considered ,cont ributed f rom not

only N but also t he charge p ump current ICP ,loop

filter ,and VCO gain KVCO .

3. 3 　Linear gain VCO

VCO comprises complementary cross2coupled

negative Gm pairs and L C2tank ,as shown in Fig. 5.

V c p and V c n are differential cont rol nodes to in2
crease the linearity of KVCO by symmet ry. The tank

consist s of inductor , capacitor , and cross2switched

varactors. The varactors are realized by MIM ca2
pacitors and the cross switches are realized by t ran2
sistors. Excellent linear p roperty has been demon2
st rated in Ref . [ 13 ] . The bet ter linear VCO gain

result s in smaller variation and is bet ter for t he

stability. Phase noise performance can also be im2
proved wit h inductors L1 ,L2 and capacitors C1～

C3.

3. 4 　Divider

A divider is implemented in ripple2like local2
feedback architect ure[ 14 ] . The divider has a range

f rom 2 k to 2n + 121. The most important benefit of

t he st ructure is to reuse t he 2/ 3 divider cell . The
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cell could be implemented wit h t he t rue2single2
p hase2clock ( TSPC) logic.

Fig. 5 　Differential complementary cross2coupled2bega2
tive2Gm VCO with cross2switched varactor

4 　Simulation and verif ication

The f ully integrated f requency synthesizer is

implemented in 0125μm CMOS RF technology. Mi2
crograp hic is shown in Fig. 6. The synthesized f re2
quency ranges f rom 1 to 1105 GHz wit h resolution

250k Hz. This result s in a large f requency2dividing

ratio of about 4000. The parameters are summa2
rized in Table 1.

Fig. 6 　Micrographic of f requency synthesizer

Table 1 　Design parameters summary

KVCO 20～40M Hz/ V

N 4000～4200

ICP 20μA

f c 10k Hz

b 10

R 460kΩ

C1 112p F

C2 1112p F

f ref 250k Hz
ζ0 1
αmax 11 68
αmin 01 63

Damping factor variation is simulated wit h t he

technology variations. In typical CMOS technolo2
gy , suppose ΔR/ R≈ 012 and ΔC/ C≈ 011 at t he

worst corner . Current can always be t rimmed ex2
ternally and of variation limited in 10 %. Due to t he

nonlinearity of the VCO tuning curve , KVCO varies

more widely t han ot her parameters. From L C2VCO

analysis ,variation of KVCO is wit hin 50 % by caref ul

design[13 ] . In this example ,t he design value is set at

30M Hz/ V af ter simulation. The division ratio N

will also cont ribute to the variation factor . In this

verification , t he division ratio cont ributes lit tle to

variation factor because of it s relative small

change. Then ,t he worst negative variation factor is

0126 and the worst positive variation factor is 216.

The simulated step responses are shown in Fig. 7 ,

including curves wit h no variation , worst negative

variation , and worst positive variation. Negative

variation tends to make t he loop under2damping

more obviously t han positive variation. The reason

is that t he dominant poleωp3 in positive variation is

Fig. 7 　Step responses for technology variations
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real , but not complex , as in negative variation.

However ,large po sitive variation is not desired due

to t he small ripple caused by under2damping. The

measured channel switching responses of cont rol

voltage are shown in Fig. 8. To verify t he variation

factor analysis , VCO operates at 1 GHz with gain

smaller t han 30M Hz/ V. Normally , t he charge

p ump current is t rimmed to t he designed value by

t he external reference Iref , when no adjust ment is

required and the response of t he loop is stable be2
cause of t he variation margin. Af ter t he external

reference current is set 60 % smaller t han designed

value ,t he ext ra negative variation of charge p ump

current is int roduced and t he loop goes to under2
damping. With t he double adjust ment of variation

factor , t he switching response is compensated and

more stable t han that wit hout adjust ment .

Fig. 8 　Channel switching responses of control voltage

for variation factor adjustment test , with 60 % extra

current reduction

5 　Conclusion

The complete closed2loop third2order s2domain

model is analyzed. Based on t he analysis , a p roce2
dure for parameter design is p roposed for t he f re2
quency synthesizer ,and t he margin for t he total pa2
rameters’ PV T variation is quantitatively ana2
lyzed. It is suggested t hat t he damping factorζ0 = 1

is a good start to variation toleration. For more

variation , a double2half adjustable current cell in

t he charge p ump is p roposed to compensate the

variation for t he stability. Additionally , a novel

VCO with linear gain is adopted to limit t he total

variation ,for t he stability concerns. The simulation

and measurement result s well verify t he analysis

and met hods wit h t he example.
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CMOS 集成频率综合器的稳定性补偿 3

何 　捷 　唐长文 　闵 　昊 　洪志良

(复旦大学专用集成电路与系统国家重点实验室 , 上海　200433)

摘要 : 通过分析频率综合器的完整三阶闭环 s 域模型 ,同时采用根轨迹分析技术 ,定量分析了工艺、电压和温度引

起的环路参数变化对频率综合器稳定性的影响 ,并提出变化裕量的概念来进行稳定性分析和参数设计. 为了获得

更加稳定的系统 ,在电荷泵中设计了结构简单的电流单元用于补偿额外的参数变化 ,并采用线性压控增益的 VCO

来减小参数的变化. 最后设计了一个分辨率为 250k Hz ,频率范围为 1～1105 GHz 的集成频率综合器来验证上述的

分析和设计方法.

关键词 : 频率综合器 ; 闭环三阶 s 域 ; 环路参数 ; PV T 变化 ; 稳定性 ; 变化裕量
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