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Oxide Thickness Effects on n-MOSFETs Under
On-State Hot-Carrier Stress

Hu Jing, Mu Fuchen, Xu Mingzhen and Tan Changhua

(Institute of Microelectronics, Peking University, Beijing 100871, China)

Abstract: Hot-carrier induced ( HCI) degradation of surface channel n-M OSFETs with different oxide thicknesses
is investigated under maximum substrate current condition. Results show that the key parameters m and n of Hu’s
lifetime prediction model have a close relationship with oxide thickness. Furthermore, a linear relationship is found

between m and n. Based on this result, the lifetime prediction model can be expended to the device with thinner ox—

ides.
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1 Introduction

Society’s increasing dependence on integrated
microelectronics has brought urgency to the issue
of reliability of the metal oxide semiconductor
(MOS) structure. Of universal concern in analog,
digital and memory technologies are the effects of
hot carriers on the integrity of MOS gate oxides.
One of the most serious problems posed by the
continuing integration of silicon CM OS transistors
into the submicrometer gate length range is the
hot-carrier effect. Working on hot-carrier effects in
MOSFETs started more than 30 years ago when
the degradation problems induced by electric fields
were first recognized'''. After those early years of
hot-carrier physics studies, a number of controver—

sies arose concerning the physical mechanisms in-
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volved, until a picture finally evolved whose basic
ideas are generally accepted today. T he degradation
due to hot-carriers has been variously attributed to
trapped electrons, trapped holes and interface
states. The degradation process is very complex
and depends on the stress conditions as well as the
device structure and the quality of the gate ox-
ide' ™.

Research groups are focused on two aspects of
hot-carrier effects. They are degradation mecha-
nism determining and lifetime prediction modeling.
T he lifetime prediction model based on lucky-elec—
tron model, which is proposed by Hu et al., is
widely used in hot-carrier induced (HCI) degrada-
tion'”". But it can not be applied to the MOS de-
vices with different oxide thicknesses because oxide
thickness has some significant effects on hot-carri-

er effect' ™. In this paper. some n-MOSFETs
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with different oxide thicknesses were stressed un—
der Vi= V4/2 condition. Oxide thickness effects on
the key parameters of the lifetime prediction mod-

3 . .
el were investigated.

2 Model for n-MOSFETs under in-
termediate gate voltage stress

2.1 Model description

Device degradation is typically measured by
the amount of saturated drain current degradation
Al a/1acao( aao is the fresh saturated drain current
lia), threshold voltage shift AV., or transconduc-
tance degradation. T hey all exhibit the same power
law behavior with respect to time. Here we gener—
alize the degradation by using the symbol AD. AD
may be interchangeably replaced by any of the
three degradation parameters in the following e-
quations.

Under dc static stressing conditions, the
amount of degradation as a function of time is giv-
en by

AD = Al (1)

w here
A= C :;exp(- R/qAEw) (2)
where @ is the critical energy required for the cre—
ation of interface traps, A is the electron mean free
path, Ew is the maximum lateral channel field, W is
the device width, /4 is the drain current, Ci are de-
pendent on the processing technology and n is re-
lated with device degradation mechanism and fabri-

. 13
cation process. Also from

where ®is the critical energy required for impact
ionization, [« is the substrate current, and C2 is a
process technology constant. Equation (3) can be
rearranged in the following equation.

exp(— R/gAE.) = [exp(- ‘I.’/qAE...)]"?'/q?

[:-ull "
- LGl (4)

i
m= ¢ (5)
By substituting the exponential term in Eq. (2)
with Eq. (4) and merging all constants into the pa-

rameter H , we can obtain

Id Ir-uh“ m e
AZ‘WH’L{, - (6)
H= v (7)

where n,m and H are extracted parameters and are
dependent on device processing technology. Thus,
the expression for device degradation from Eq. (1)

becomes

[.I [ @‘ m‘ n .
t

AD = ’WH\ 2

(8)

From Eq.(7), we can obtain the expression for de
device lifetime T from the fact that ADi=A T (AD:
is the amount of degradation at which device life-
time is defined):
T= BWlw """ (9)
B= HAD!" (10)
In this model there are three key parameters.
They are n, m, and H . The parameter m is related
with device fabrication process and the gate to
drain transverse field. The parameter H is process
and device structure dependent. All these parame-

ters can be extracted from experiments.
2.2 Experiment

Surface channel n-MOSFETs with 4, 5,7, and
9nm gate oxides and 15/1 of W/L were employed
in experiments. All the experiments were per—
formed at V.= V4/2 stress mode and at room tem-
perature.

Figure 1 shows the degradation characteristics
of saturated drain current (/aw) and threshold
voltage (Vi) shift with respect to time. As ex-
pressed in Eq. (1), the degradation follows a time-
power law, except for longer stress time or higher
degradation level. The gradients are in the range of
0.7~ 0.9 and 0.9~ 1. 3 for [ degradation and V.,
shift, respectively. T hey are a little larger than that

reported (0.5) in literature. This probably is due
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to electrons trapping in the gate oxide. Taking
10% of Iua degradation and 0.1V of Vi shift as

failure criterions, lifetimes were derived from

Fig. 1.
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Fig. 1 Taw and Vi degradation with stress time
of n MOSFETs under Vi= Va/2 stress mode
(a) laa degradation, n: 0.7~ 0.9: (b) V\ degrada-

tion,n:0.9~ 1.3

2.3 Parameter extraction

Rearranging terms of Eq. (8), yields,

m_ @ -m

w=28 1, (11)
B

H=ypw (12)

= Vu/2 stress mode. Iaa and Vi are lifetime moni—
tors for Fig. 2 (a) and (b), respectively. The sub-
strate and drain current are the initial values mea—
sured at the beginning of stressing. Each data set
for a specified oxide thickness follows a straight
line very well. Therefore, two key parameters m
and B can be obtained from this figure directly.
The values of the parameter m derived either from
s degradation or from Vi shift are all in the range
of literature reported (2.9~ 3.7)"*" " More-
over, the values of m are almost the same for these
two lifetime monitors, especially for 4 and 5nm de-
vices. This is similar to Ref.[21].

8
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By plotting Td/W vs I./l1in a logdog scale, the
parameters m and B can be obtained from the slope
and the interception. Once B is obtained, H can be
extracted by Eq.(12). The parameter n can be ex—
tracted from device degradation characteristics.

Figure 2 is a plot of Wd/W vs I.u/I4under V
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Fig. 2 /W vs [.w/Iaplot for (a) laa degradation
and (b) V. degradation under V= Va/2 stress mode
The straight lines are fitted results. Parameters m and

B are derived from this figure directly.
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3 Oxide thickness effects on the

model parameters

[t can be seen from Fig. 3 that the parameter n
and m increase with oxide thickness increasing.
This is probably due to the exact oxide thickness
dependence of device degradation mechanism or ox-
ide thickness dependence of @ (the critical energy
for interface trap creation) or both. It can be seen
from Fig. 4 that the parameter m has a linear rela-
tionship with the gradient n. The gradient n implies
device degradation mechanism. T herefore, the oxide
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Fig. 3 Oxide thickness dependence of parameter m

(solid symbols) and the gradient n{open symbols) as a
function of lifetime monitor They both increase with

oxide thickness increasing.

40
n-MOSFETs 300K, ¥, = V,/2 stress mode

i ® Basedon I, degradation
® Basedon V¥, shift
36 [ — Linear fit
(1
g 32} .
.

2.4 L " i L N L
0.2 04 0.6 08 1.0 1.2 14

Fig. 4 m vs n as a function of lifetime monitor A
linear relationship is found between the parameter m

and n taking faw and Vi as lifetime monitors.

thickness dependence of the parameter m (or R)
may be due to device degradation mechanism. Pa-
rameter m for devices with thinner oxides can be
extrapolated from Fig. 4. The linear relationship
between m and n is very useful for lifetime predic-
tion. T he lifetime prediction model can be expended
to the devices with thinner oxides. The physical ex-
planations for the oxide thickness dependence of
parameter m are not at hand. Thus it still needs

study further.

4 Discussion and conclusions

The oxide thickness effects on HCI reliability
have been a subject of research recent years'"™ .
With the reduction in oxide thickness, less degrada—
tion in terms of charge trapping (as measured us-
ing threshold voltage shift) has been report-
ed'”"™ ' This can be attributed to reduced volume

|

available for charge trapping''” and tunneling of

carriers from the oxide into the gate and sub-

[4.17.1

8 a s
strate ' Recent work showed that the addition

of Coulomb repulsion between the already trapped

- 5
electrons and the injected ones'”

may play an im-
portant role in modeling HCI degradation. Conse—
quently, as shown in Fig. 3, the gradients for the
devices with thinner oxides are smaller than those
for the devices with thicker oxides.

Based on the linear relationship between m
and n, as shown in Fig. 4, once the parameter n is
known, the parameter m can be extrapolated direct—
ly. It is not necessary to stress the device till it
fails. Though different oxide thicknesses give rise
to different model parameters, the lifetime predic-
tion model in Ref. [ 3] is still valid if the parame-
ters m and n for the oxide thickness interested are
employed.

Using n—channel MOSFETs with oxides rang—
ing from 4 to 9nm, oxide thickness effects were
studied in terms of the key parameters of Hu’s life-
time prediction model. It shows that the model pa-
rameters m and n are related with oxide thickness.

m has a linear relationship with n. Based on this re-
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sult, the lifetime prediction model can be expended

to n-M OS transistors with thinner oxides.
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