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Abstract: T he valence subband energies and wave functions of a tensile strained quantum well are calculated by the

plane wave expansion method within the 6 X6 Luttinger-Kohn model. The effect of the number and period of plane—

waves used for expansion on the stability of energy eigenvalues is examined. For practical caleulation, it should

choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of

plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.
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1 Introduction

Strained semiconductor quantum-wells have
been extensively analyzed because of their abilities
to improve the performance of quantum well opto-
electronic devices and to realize polarization insen—
sitive semiconductor optical amplifiers. In the anal-
ysis, a 6 X6 Hamiltonian from the theory of Lut-
tinger-Kohn and Bir-Pikus'", which describes the
strain-caused coupling of the heavy-hole, light-
hole, and spin-orbit split-off (SO) bands, is usually
employed. An effective-mass equation based on the
6 X 6 Hamiltonian'" can be solved to obtain the

subband

. 2
methods such as the transfer matrix method ' and

energies and wave functions. Several

.. . 3 .
the finite difference method'”, etc. have been intro—

duced to solve this equation. The transfer matrix
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method is very effective for the 4 X4 Hamiltonian
case' ', i. e., only considering the coupling of the
heavy-hole and light-hole bands. However, it be-
comes very complicated if considering the 6 X 6
Hamiltonian case, so it is seldom used in this case.
The finite difference method is straitforward and
easy to implement, but it needs to solve eigenvalues
and eigenvectors of very large dimensional matrix-
es. This involves great computation effort and is
difficult to implement on a personal computer.

[n this paper, we solve the effective-mass e—
quation by using the plane wave expansion
method' ", which can be easily implemented just as
the finite difference method but needs much less
computation effort. Expanding the envelope func-
tion by orthogonal and normalized plane waves, we
can transfer the Hamiltonian into a matrix of mod-

erate dimensions. The subband energies and wave
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functions with presecribed accuracy can be efficient-
ly calculated by solving the eigenvalues and eigen—

vectors of the resulted Hamiltonian matrix.

2 Plane wave expansion method

For a strained semiconductor quantum well
grown on the (001) -oriented InP substrate with bi-

axial-strain, the strain tensor is defined as:

EE 23 %
aop — a
€ox = E_\'_\' - 3
a
2C:
E: = — C]] Exx ( 1}

where ao and a represent lattice constants of the
substrate and the quantum well, respectively; Cu

and Ci2 represent stiffness constants. Under the ax-

ial approximation'”, the 6 X6 Hamiltonian can be

simplified into a block-diagonal form'*”:

| H §x3 0
H = Lol
0 H 35x3
P+ Q- Vi(z) - Ry7 S - l2mr 4 r‘?sp
— | UT)
Hus = — ~ RS, P-Q-Wiz)  l20%i |35 |up (2)
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- 2R+ —%9 207 i %9 P+ Az) - Vi(z)
where ¢ is for U or L, which decides the choice of sign of plus or minus in the above matrix, and

P=Pi+ P,Q0= Qi+ Qo

_ R 2 2 _ h’ 2 2
Pu= (Fn(ki+ K).0i= (k- 28),

_ b
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Se= ()2 [37kek.,
f

ko= K+ k2

where k< and ky represent plane-wavevectors; k: is
interpreted as a differential operator — &/Cz: Y1, Y2
and ¥3 represent Luttinger parameters; a. and b rep—
resent Bir-Pikus deformation potentials; A(z) rep—
resents the spin-orbit split-off energy; Vi(z) repre-
sents the unstrained valence band edge. Here the
energy zero is taken to be top of the unstrained va-
lence band edge (i.e. Vi(z)= 0) in the well region.
| UT),| U2) and | US) are the new basis set corre—
sponding to heavy hole, light hole, and split-off
bands, respectively. Their detailed relations with
the original basis set i. e. Bloch wave functions | 3/
2, +3/2),]13/2, £1/2) and | 1/2, £1/2) can be
found in Reference| 2]. The simplified effective-

mass equation can be written as

3
S H gt (kooz) = E™(ko)gi*(ko,z) (4)

v=1
where m refers to the number of subband, g "( ks,
z) represents the envelope function, and E™’ rep-
resents the subband energy.

To ensure the Hamiltonian in Eq. (4) to be
Hermitian, all of the operators of forms A (z) k.’
and B(z)k: should be replaced with £:A (z) k- and
(B(z)k:+ k:B(z))/2""". We put the quantum well
into an assumed large box with the well located at
the center. T he boundary conditions at the walls of
the box will not affect much if we just consider
confined states. The side length of the box is so
large that the envelope functions vanish at the

walls. For convenience, a periodic boundary condi-
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tion is imposed so that orthogonal and normalized
plane waves can be introduced and the envelope

functions can be expanded as

oo

> al (k)| p),

|p) = exp(i2pme/l)/ |1 (5)

where p represents an integer and / represents the

g (ko,z) =

period. Substituting Eq. (5) into Eq.(4),we get

3 -
Y H b Y (k)| p)

= E""”(kv)(; aiy(ko)| p?) (6)

Left-multiplying Eq. (6) with the plane wave 4|,

4 kA (z) k| p) = (%’Tqu[m,+ (A

fl (kB(x) + B()k)/2p)= 2 x>

sin[(p — ¢+ §)?T "]
mp - q+ §)

4 C(z)|p)= Ci+ (C.— Ci)

where d« and d» represent the widths of the well
and barrier, respectively, the period I= du+ ds, and
£ represents an infinitesimal. In practical calcula—
tion, we use a finite number of plane-waves as an
approximation to implement the expansion. If p
varies from — N to N,i.e. and 2N + 1 plane-waves
are used, the Hamiltonian becomes a 6N+ 3 dimen-
sional matrix. T hrough solving its eigenvalues and
eigenvectors we can obtain the valence subband en-

ergies and wave functions.

3 Numerical results

We considered a quantum well structure with
a 6nm InosGaosAs (tensile strain) well and InP
barriers. The parameters listed in paper| 2] were
used in the following calculation. For the conduc-
tion-band and valence-band offsets, AE.= 0. 36AF.
and AE.= 0. 64AE: were assumed. The first several
subband energy dispersions were shown in Fig. 1,

in which the data were obtained under the condi-

tion that 61 plane-waves used for the expansion

W= Ah)

D+ a

we transform the equation into a matrix form

3

E Z (ﬂ H?X'\Julﬂ)ﬁ‘.:";:}

p=

= E™(ko) by

(7)
H 5x3. can be expressed as the sum of several gen—
eralized items such as k:A(z)k: and (B(z)k: +

k:B(z))/2 and C(z),where A(z),B( z} and C(z)
are step functions of z,i.e. they have different val-
ues for the well and barrier region, which are indi-
cated by the subscript w and b, respectively. T aking
the center of the well at z= 0, we can calculate §]

Hi p) based on

sin[(p — ¢+ 5)”{?}
mp - g+ &) ]
du
sin[(p - ¢+ &)m g] (8)
[Bfa+ (B"'_ B'r’] '.rr(p - q+ g]

and the period [ equal to 20nm. It can be seen that
the first subband becomes a light hole subband be-
cause of the tensile strained quantum well struc-
The envelope functions for the LH1 subband
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Fig. 1 Energy dispersions for the first three

subbands of the tensile strained InosGaosAs-InP

auantum well with the well width 6nm

at ko= 0.02X2m/ao were shown in Fig. 2. It is clear
that the second component g:"" i. e. the light hole
component is much larger than the other two com-
ponents, so it is denoted as a light hole subband.
But for the HH1 subband, it is so different that the

first heavy hole component is much larger than
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Fig. 2 Envelope wave functions for the LHI
subband of the tensile strained Ino.sGaoesAs-InP
quantum well with the well width of 6nm and ke

= 0.02X21/ao

others as shown in Fig. 3. For certain period [, the

number of plane waves used for expansion should

be large enough to ensure the eigenvalues un-

changed in a prescribed range. In Fig. 4 we plotted
the energy eigenvalue of the LH1 subband at ke=

0.02 X 21/ao versus the number of plane waves

gllal
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Fig. 3 Envelope wave functions for the
HH1 subband of the tensile strained Ino.s

Gaos As-nP quantum well with the well

width of 6nm and ke= 0. 02 X 2n/ao0

2N + 1 used for expansion. The period [ was set to
be 20nm and N varied from 10 to 60. It can be seen
that the energy eigenvalue keeps unchanged within
a range of 0. ImeV for N larger than 30. As to the
period [, it should be chosen large enough to ensure
the envelope functions vanish at the boundary. In
Fig. 5, we showed the energy eigenvalue versus the
period [, the number of plane waves were chosen to

keep the eigenvalues unchanged within a range of

S 23 %
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Fig. 4  Energy eigenvalue of the LHI1 sub-

band at ke= 0. 02 X 2m/a0 versus the number

plane-waves used for expansion
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Fig. 5 Energy eigenvalue of the LH1 subband
at ko= 0.02X2m/ao versus the period [

0. ImeV. We can see that the eigenvalues keeps un-
changed for [ that is larger than 15nm, but for larg-
er periods more plane waves are needed for expan-
sion, which means more computation effort. In
practical calculation, we should choose suitable [
and N to ensure required accuracy and save time of

computation simultaneously.

4 Conclusion
We have used the plane-wave expansion
method in calculating the valence subband energies
and wave functions for a tensile-strained quantum
well within the 6 X 6 Luttinger-Kohn model. We
have also introduced the principles to select the pe-
riod and number of the plane waves used for the
expansion to obtain the required accuracy. The ob-

tained subband energies and wave functions form
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