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Abstract: Previously. a single data—path stack was adequate for data-path chips. and the complexity and size of the

data-path was comparatively small. As current data-path chips. such as system-on-a~chip (SOC). become more

complex, multiple data-path stacks are required to implement the entire data-path. As more data-path stacks are in—

tegrated into SOC, data—-path is becoming a critical part of the whole giga-scale integrated circuits ( GSI) design.

The traditional physical design methodology can not satisfy the data-path performance requirements, because it can

not accommodate the data-path bit=sliced structure and the strict performance (such as timing, coupling, and

crosstalk) constraints. Challenges in the data-path physical design are addressed. The fundamental problems and

key technologies in data-path physical design are analysed. The corresponding researches and solutions in this re-

search field are also discussed.
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1 Introduction

In recent years, the VLSI/ULSI (very/ultra
large scale integrated circuits) technology has pro-
foundly advanced'"”. The driving force behind the
spectacular advancement of integrated circuit tech—
nology in the past thirty years has been exponen-
tially reduced in scaling of feature size. It has been
following Moore’s Law'™ at the rate of a factor of
0.7 reduction every three years. It is expected that
such exponential scaling will continue for at least
another 10 to 12 years as projected in the 1997 Na-

tional Technology Roadmap for Semiconductors

(NTRS97)".
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With progress in giga-scale integrated circuits
(GSI) and very-deep-submicron (VDSM) technol-
ogy,we can design a single chip with large overall
dimension but smaller feature size and wire space.
We also can design it with more and more func-
tions and many more transistors. Table 1 shows
the latest technology roadmap trend for the semi-
conductor'”’. Meanwhile, Intel Corportion has de—
signed a 0.09um process desktop Pentium 4 pro-
cessor, code-named Prescott, which is slated for in-
troduction in the second half of 2003'*". A1l of these
advances enable system-on-a-chip (SOC) integra-
tion instead of system-on-a-hoard (SOB) integra-
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Table 1 2001~ 2016 technology roadmap trend for the semiconductor

Production year 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016
DRAM half-pitch/nm 130 115 100 90 80 70 65 45 32 22
MPU/ASIC half-pitch/nm 150 130 107 90 80 70 65 45 32 22
MPU printed gate length/nm 90 75 65 53 45 40 35 25 18 13
MPU physical gate length/nm 63 53 45 37 32 28 25 18 13 9
On-~chip local clock/M Hz 1,684 | 2,317 | 3,088 | 3,990 | 5,173 | 5,631 | 6,739 | 11,511 | 19,348 | 28,751
Maximum number wiring levels 7 8 8 9 9 9 10 10 10
In the physical design of SOC, many new many custom word lines ( or data-path

problems need to be solved. One of the most diffi-
cult is data-path physical design. In typical state—
ofthe-art microprocessor designs, data-paths com-
prise about 70% of the logic (excluding caches)'”
and occupy as much as 30% to 60% of the silicon
area """, However, data—path design is typically
done manually, and is often done in custom
style'""". Traditional place and route (P&R) tools
are incapable of using this regularity to produce
more compact designs that give higher perfor-
mance' . The layout results are often inferior to
those designed manually. But manual design is
slow. Meanw hile, high performance data-path de-
sign is still very time-consuming. Thus, We will
face great challenges in data-path physical design.
Data-path physical design becomes a field of
active research. Many research groups in universi-
ties, institutes, especially in electronic industries,
are doing in-depth studies in this research field.
But. there is a scattered literature in the area of da—
ta-path physical design. This paper focuses on pre-
cisely this problem. T he remainder of this paper is
organized as follows. In Section 2, the repeating
bit-sliced structure is introduced. In section 3, we
intend to briefly survey them. Then, we will give

some detailed analyses and suggestions.

2 Repeating bit-sliced structure

Informally, data-paths are circuits where the
same or similar logic is applied to several bits of a

13
bus'"!

Data-path stack (or simple stack, bit—
stack'™"™) is a common structure for data-path

layout inside SOC. A data-path stack is made up of

macros'' """, functional building blocks, FBBs''"),
such as registers, ALUs, adders, shifters, multi-
plexers, buffers, comparators to from the data flow
of the functional units such as the fixed-point,
floating-point execution units, the fetch unit, and
the decode unit in a microprocessor.

A word line (WL) is made up of repeating

c e 17- 19 14, 15]
Hit-slices or

Dit—cells each perform-
ing its required function on a single bit of the data
flow, plus a small control cell connected to the con-
trol logic external to the data-path.

Figure 1 shows the regularity placement and
routing of a data-path circuit. Figure 2 shows the
schematic layout of data-path and the detailed view

of a bit-cell. There are two groups of interconnects
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path circuit'"”

Regularity placement and routing of a data—
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Fig. 2 Schematic layoul of data-path and the detailed
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view of hit-cell'™

flowing perpendicular to each other, as shown in
Fig. ', One is the data flow, which runs horizon-
tally along parallel wires. The other is the control
flow, which goes vertically. The control flow can
either be global control signals, which operate on
CLOCK
signal) , or local control signals, which operate on
adjacent bits (e.g.the CARRYAN/OUT).

Figure 3 shows the bit-sliced abstractions of a

every bit simultaneously (e. g. the

data-path circuit and their circuit block configura-
tion. The bit-sliced abstraction of a data-path cir—
cuit ( called APM ( abstract physical model) in
Ref.[ 17]) consists of circuit blocks corresponding
to one-bit operations in the data-path. The circuit
block is the basic building unit of APM. Either it
can be a standard cell from the library, e. g. AND,
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Fig. 3

and their circuit block configuration

Bit-sliced abstractions of a data-path circuit
117]

OR, XOR, DEF, Full Adder, or it can be a data-
path leaf cell or a group of standard cells, e. g. 1-bit
multiplier, Booth MUX. In APM, each circuit block
is represented as a rectangular box. with wires in-
dicating its input and output interconnections. T he
height of the box is the height of corresponding
standard cell or data-path leaf cell, and the width is
the cell width or the sum of widths of the cells in
the block.

It is not necessary that all the WLs have the
same number of bit—cells. The number of bit-cells
depends on the width of the data-path, typically
16, 32, 48, or 64bit. The majority of the data flow
goes from one WL to another along the same bit.
except for a very small portion of data flow, called
the multi-bit data signals, which span more than

one bit.

3 Survey and analysis

Data-path stacks inside SOC have certain spe-
cial properties. As fabrication technology moves in-
to VDSM feature size and giga-hertz clock frequen—
cies, timing, coupling, and crosstalk become in-
creasingly dominant factors in data-path layout.
The majority of the data flows goes from one WL
to another along the same bit, except for a very
small portion of data flow that spans more than
one bit. Repeating Dit-slices ”/ bit—cells 7 are in
the data-path. Thus, merely minimizing congestion
and chip size is not adequate. We urgently need ef-
ficient performance-optimizing algorithms for data-
path layout design. M eanw hile, bus-—net routing be-
comes more important and structure regularity
should be well taken into account in layout algo-
rithm design.

In this section, based on the data-path physical
design goal and physical design flow, we will dis—
cuss key technologies throughout data-path physi—

cal design process.
3.1 Data-path physical design goal

The data—path physical design goal includes
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the following items.
(1) The quality of compiled data-path layout
should be close to that of the handcrafted layout.
(2) Performance (such as timing, coupling'™”,
and crosstalk) is the first priority for optimization.
(3) Layout generation should be in the form
of bit-sliced, regular designs.

(4) Designs are usually based on standard cell

(SC) with a few macro cells.
3.2 Chip partition

Previously, a single data—path stack was ade-
quate for data-path chips, and the complexity and
size of the data-path was comparatively small. As
current data-path chips, such as SOC, become more
complex, multiple data—path stacks are required to
implement the entire data-path. Then, we need to
solve the problem of how to partition chips.

Figure 4 shows the partition of a multi-stack
data-path chip, which includes data-path stacks,
control logic, chip drivers, on-chip memory, and
random logic. References| 14, 13] and [ 21] present

useful algorithms for chip partition.

Fig. 4 Partition of a multi-stack data-path chip

Dala-

Randam logic

3.3 Floorplanning

The floorplanning algorithms can be generally
classified into the following three categories.
3.3.1 Among all stacks

For these floorplanning algorithms, Refs. [ 14,
15] use the enumerated method and Refs. [ 22, 23]
use the mixed mode method.

3.3.2 Inside a data-path stack
Since a data-path stack may contain macro

cells besides common WLs, it may need a floor—

planning algorithm inside a data-path stack. M ean-

while, to meet the needs of size or/and shape of a

data-path stack, we may use the floorplanning

method to optimize the area and shape ratio of the

data-path stack.

3.3.3
Based on the O-ree algnrilhmly‘zsl, Ref. [ 26]

Inside a bit-cell

described a floorplanning algorithm inside a bit—

cell.
3.4 Placement

Data-path with great regularity has the so
called bit-sliced structure. Data-path is usually
based on SC so that the bit-slices will be mapped
into the rows of SC placement. This will guide the
placement process. Here, we present the key strate—
gies for data—-path placement.

(1) Extract the structure regularity informa-
tion from netlist. Extracting regularity information
is equal to assigning each cell to one unique pair of
bit-slice and WL.

(2) Assign rows for data-path cells. Row as-
signment will follow the order of bits extracted
from netlist as closely as possible. T he objective is
to minimize the weighed wire length of nets across
rows.

(3) Determine the inner-row order for each
cell in that row. Innerrow ordering is similar to

. . . [27.28]
the one-dimensional element ordering problem

which has been proved to be NP-hard'”. The ob-
jective is to minimize weighed wire length of nets
and minimize track congestion.

(4) Maintain the control signal alignment.

(5) Design timing and coupling driven place-
ment algorithms. Determining net weight should
take the timing and coupling effects into account.

The hybrid approach of genetic algorithm
(GA) and simulated annealing (SA) is used for da-
ta-path placement in Ref. [ 18]. It can get a good
solution. But it is time-consuming. New, fast and
high performance placement algorithms need to be
developed. References| 30~ 32] presented transis—

tordevel algorithms for data-path placement. T he
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testing cases are on a very small scale. Reference
[ 33] presented an algorithm for eliminating the net
congestion of data-path chips.

The available data-path tools for placement
can be fundamentally classed into three categories:
generation tools (GT), synthesis tools (ST), and
extraction tools (ET)!"?. Among them, ET can
meet the needs of GSI progress. However, it is dif-
ficult to design an algorithm for extracting struc-—
ture regularity information. References[ 17, 34] in-
troduced such algorithms, but these algorithms rely
on the synthesis results. Key features of the
methodology in Ref. [ 35] are automatic extraction
of regular structures and utilization of regularity
even after extensive logic optimization, which is a
useful algorithm.

Most innerrow ordering algorithms use
heuristics, except for very small problems. Ap-
proaches using these algorithms include integer

. 132 . 127]
programming ~~, the constructive method ™", the

| 36, 37] hl 16, 37]

, the branch-and-bound searec
[21]

mini-cut

and the analytic method
3.5 Routing

Routing for data-path is different from that
for SC. One of the essential differences between
them is bus-net routing. T herefore, data-path rout-
ing includes two aspects: signal-net routing and
bus-net routing.

3.5.1 Signal-net routing

Signal-net routing is similar to SC routing. It
has two routing stages: global routing and detailed
routing.

(1) In signalnet global routing, we have the
following optimizing objectives.

1) Congestion optimizing

2) Timing slack constraints

3) Shielding requirements of critical nets

4) Straight routing requirements of critical
nets

In Refs.| 14, 15], a maze runner-type of wiring
tool was used to wire the chip. It is simple and easy

to implement. But it has poor routing capability. In

Ref. [ 19], a channel routing method was proposed
to route the signal-net. If congestion occurs, the
bit-slices are stretched. This method leads to a
larger data—path area.

A congestion optimization algorithm for a
fourHayer data-path routing was presented in Ref.
[ 38]. 1t gets a good routing result. However, it has
some shortcomings: The special ‘pinrail 7 mecha—
nism limits the algorithm application. It takes a
long running time. Only a few small-scale artificial
cases were tested.

Here, we greatly emphasize timing optimizing.
Timing model and timing optimizing strategy are
two important aspects of the optimization prob-
lem. The Elmore delay model'™ and the Sakurai
delay model'™ are two kinds of timing models
widely used in timing-driven routing'"" . Howev—
er,to get more accurate delay value, we should use

|

the tabledookup delay model'™ to calculate the

transition and corresponding delay. Some useful re-

“* using the tabledookup delay model

searches'"
have been done on SC placement. Efficient timing
optimizing strategy is also very important. Refer-
ence| 48] presented an efficient algorithm to opti-
mize timing in SC global routing.

(2) Signalmet detailed routing follows track
assignment. T his type of routing meets the techni-
cal needs of chip manufacturing.

1) If there is a via at the end of a wire, an ad-
ditional short wire segment (like a1 and a2 in Fig. 5
(a)) will be needed. In Fig. 5(b), the wire space
has to be enlarged because two additional short
wire segments are needed at the same position. To
avoid this case, these two vias need to be displaced,
as showed in Fig. 5(c¢).

2) When a wire in the first layer is connected
to a wire in the third layer, two vias will be need-
ed. There should be a fadder construction” in the
second layer.

A fast signalmet gridless detailed router was
presented in Ref. [ 8]. The goal of this detailed
routing algorithm is to tackle very large industrial

data-paths.
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Fig. 5 Special operations in detailed routing

3.5.2 Bus-net routing

Bus—net routing can be done in two different
ways: as special nets to be pre—routed before sig—
nal-net global routing, or as an independent group
to be routed simultaneously with signal nets in the
process of global routing. The former is easy to im-
plement but the routing result is not optimal. T he
latter can get an optimal routing result but may be
difficult to develop. However, to get good routing
results, the latter is worthy of study.

In order to keep the timing balance ( zero
skew),we should use the same routing pattern for
the nets in the same bus group. Crosstalk also
should be considered throughout this process.
Based on a simplified crosstalk model, we estimate
the crosstalk risk for bus routing and give it a suit-
able number of routing tracks.

A bus routing algorithm in the process of de—
tailed routing is proposed in Ref. [ 49], which is
based on line-probe algorithm with gird. We may
use the line—probe algorithm as the fundamental

method for bus—net routing.
3.6 Other layout items

3.6.1 Resources estimation

Resources estimation follows placement,
which includes the following functions:

(1) Create global routing graph (GRG). The
size of global routing cell (GRC) is adjustable. T oo

large or too small capacity of the GRG edge will af-

fect the routing performance.

(2) Route short nets on metal one (M 1) lay-
er.

(3) Estimate track capacity of the GRC. Give
suitable capacity constraints as the routing re-
sources except M 1.

(4) Evaluate the placement result and judge
whether to accept the result or not, which can
avoid useless succeeding works (e. g., detailed
routing) .

[n general, we need to pre-route special nets
before resources estimation. T he special nets rout-
ing includes power/ground (P/G) nets routing and
clock nets routing.

3.6.2 Layer assignment

Layer assignment is a very useful step to re-
duce coupling. Before signalnet detailed routing,
we should take this step to optimize performance.
The goal of this step includes many aspects, such
as reducing crosstalk, even distributing net wires,
and minimizing wire length and via number. T here
are some noticeable strategies in layer assignment
as follows.

(1) Coupling among wires in the same layer is
much stronger than in every other layer.

(2) Do not assign too many long nets to one
layer—pair.

(3) Assign short nets and long delay permit-
ting nets to relatively lower layer—pair. Assign crit—
ical and long nets to higher layer-pair if possible.

(4) Assign one net to one layer—pair as possi-
ble.

(5) Reduce the number of higher layer—pairs
in order to keep chip size small.

3.6.3 Track assignment

After layer assignment, the wires will be

placed on tracks track assignment. In the pro-
cess of track assignment, the available tracks inside
each bit-slice are assigned to wire segments for
each net, as shown in Fig. 6.

Track assignment in data-path layout is simi-
lar to the cross point assignmentlm] in SC layout.
The difference between them is that track assign-—

ment is inside bit-slices. Some useful researches are
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Data signal wires

Fil FB2 B3

. . . . . 9]
Fig. 6 Tracks inside the bit-slice'"”

reported in Refs. [ 18, 19]. Track assignment algo-
rithms should take the following factors into ac-
count.

(1) Minimize the track density inside a bit—
slice. The maximum track density in the track den-
sity profile determines the data-path height. Figure
7 shows the effect of track assignment on track

9

density. If the track density'"” exceeds the track ca—

', extra tracks are required on top of the in—

.19
pac:tyl
ternal tracks. This contributes to the increase of

the data-path height and the chip area.

Track=1

Track-2
Track-1
Treack—4
Track-5
Track-)
Track-7

A
s
15

I

1 18]

Fig. 7 Effect of track assignment on track density

(2) To minimize the total wire length, we
should consider the topology of the net when we
assign a track to one of its wire segment. For ex—
ample, the track assignment shown in Fig. 8(a) is

better than that shown in Fig. 8(b).

Track 1
Track 2

Track 1
Track 2

@ )

Fig.8 Comparison on track assignment

(3) To minimize the total wire length and the

number of vias, we should stretch long wires as

straight as possible.

(4) To keep the timing balance (zero skew),
we should use the same routing pattern for the nets
in the same bus group. Thus, we also need to con-
sider this case in the process of track assignment.

(5) Reduce crosstalk risk by minimizing the
overlap-dength between two adjacent wires. Or, not
route two long parallel wires in two adjacent
tracks.

3.6.4 ECO(engineering change order)

ECO is very useful for designers to improve

their designs for data—path layout. It provides some
special commands for chip designers to do ECO
tasks. By using these special commands, the design-
ers can improve their local design from their
knowledge and experience. For example, they may
adopt buffer inserting"”" to optimize wire timing. or
change the position of some cells to obtain required
space, or route wires for critical nets to meet
shielding requirements.
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