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Circuit Design of On-Chip BP Learning Neural Network
with Programmable Neuron Characteristics’
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Abstract: A circuit system of on—chip BP(Back-Propagation) learning neural network with pro—
grammable neurons has been designed, which comprises a feedforward network, an error back-
propagation network and a weight updating circuit. It has the merits of simplicity. programma-—
bility, speediness, low power-consumption and high density. A novel neuron circuit with pro-
grammable parameters has been proposed. It generates not only the sigmoidal function but also
its derivative. HSPICE simulations are done to a neuron circuit with level 47 transistor models
as a standard 1. 2pm CMOS process. The results show that both functions are matched with
their respective ideal functions very well. The non-inear partition problem is used to verify the
operation of the network. The simulation result shows the superior performance of this BP neu-

ral network with on—chip learning.
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1 Introduction

Artificial neural networks with a Back-Propagation ( BP) algorithm present a practical
approach to various problems. The hardware implementation is very necessary and essen—
tial because of the normal requirements of many applications. Hardware implementatin of
BP neural networks can be achieved in several ways, including off-chip learning, chip-in—
thedoop learning and on—chip learning. Which one to be chosen is not always clear—cut in

practice, and the answer depends on not only the application, but also the topology of a net—

* Project Supported by National Natural Seience Foundation of China ( Under Grant No. 69636030) .
LU Chun (/7 #l), Ph. D. candidate. Her work focuses on the analog 1C design and V LSI implementation of artificial
neural networks. E-mail: luch@ dns. ime. tsinghua. edu. en
SHI Bing=ue( 41 %), Professor. His present research interests include digital/analog 1C design, artificial neural
networks, fuzzy logic system and their VLSI implementation.
CHEN Lu(F& /), Ph. D. candidate. His work focuses on DC-DC converter and VLSI implementation of artificial
neural networks.

Received 18 June 2000, revised manuscript received 1 August 2000



12 LU Chun( i ?‘l_‘.) et al.: Circuit Design of On-Chip BP Learning Neural Network === 1165

work and its different constrains as well. On-chip learning is imperative if the system meets
the following requirements'” ™': (1) high speed, (2) autonomous operation in an unknown
and changing environment, (3) small volume, (4) reduced weight.

One of the neural networks” important components is the neuron, whose performance
and complexity greatly affect the whole net. In many literatures, its activation function is
found to be sigmoid. In the on-chip back—propagation learning, the non-inear function and
its derivative are both required. A simple neuron circuit'”, which can realize both the neu-
ron activation function and its derivative, has been proposed in this paper. Having current
inputs and voltage outputs, the neuron is built with strong-inversion biased transistors.

Furthermore, the circuit enables the threshold and the gain factor to be adjustable.
2 Circuit System Architecture

The BP network includes the input layer, the hidden layer(s) and the output layer.
Each layer has several neurons. The transfer function of each neuron is always a sigmoid
one as expressed in Eq. 1,

!
T = 14 exp(- «(8) + 9 (D

where S= X* W, X is the input matrix, W is the weight matrix, « is the gain factor and 0 is

the threshold vector. It is supposed that R is the number of the training set elements, w} is
the weight between the ith (0=<i< n) neuron of the (/= 1)th layer and the jth neuron of
the Ith(I= 1,2, -, L) layer.and @ is the thresho]{] of the jth neuron of the Ith layer. For
the sdke of convenience, let §= w and x+ '= 1. To a certain training sample r(r= 1,2,

R).x::"is the output of the ith neuron of the (I 1)th layer;x;.- is that of the jth neuron
of the Ith layer; #.- is the target value when [= L; .- is the weighted sum from the ith neu-

rons of the (I- 1) th layer to the jth neuron of the lth layer. The feedforward calculation

can be expressed as follows,
xi. (k) = f(si.(k)) = [ Zuw (k)xi' (k) (2)

To describe the error back-propagation process, several definition should be made

first. The neuron error is defined as,
tir = x5.0(k), l=L

€.(k) = | i (kSN (h), 1<I< L v

where the weight error is defined as,
b (k) = f(sir(k)) €. (k) (4)

Then the weight updating rule can be expressed as Equation (),
R

wi(k + 1) = whi(k) + 1>, 85.(k)x)..(k) (5)

r=1

where M is the learning rate, Awi(k+ 1) = Z 8i..(k)xj.-(k) is the weight change.

r=1
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____________________ The circuit system is designed according

.+ to the algorithm above. It comprises a

feedforward network, an error back—propaga-

Error Back !
Propagation tion network and a weight updating circuit, as
Networks |

Weight
Updating
Circuit

shown in Figure 1. In the feedforward net-

work, the synapse is realized by the Gilbert

multiplier, as is simple and area-economic. T he

nonlinear /¥ transfer function is achieved by

Feedforward
Network

the neuron. Using the forward difference
method, the neuron generates a sigmoidal

FIG.1 Diagram of Circuit System functin with its derivative. The latter is used in

the error back-propagation network. The

Weight Unit ( WU ) implements the

A, thy—*ADC

weight update operation, with the dia-
gram shown in Fig. 2. A 7-bit ADC is

used to convert the analog weight change

DAC» w, (k1)

signal to a digital one and is added to the

12-hit weight. The new weight is convert-
ed to an analng signal b‘f a DAC for the FIG. 2  Diagram of Weight Updating Unit

next feedforward calculation and stored in the RAM for the next weight updating.
3 Neuron Circuit

Figure 3(a) shows the schematic diagram of the proposed neuron circuit. Vai is the
3.3V —oltage source. Vaun outputs the sigmoidal activation function. The approximate
derivative can be obtained via ( Voui—= Vu2). In the dash frame, the fixed voltage Vi is
carefully chosen so that both the transistors M1 and M2 work in their respective linear
ranges. The formed linear resistor Raz can be controlled by the gate voltage of both transis—
tors Vx and Ve.In the dash dot frame, a simple differential pair composed of identical tran—
sistors and the active loads makes the actual sigmoidal non-inear. One port of the differen—
tial pair is connected to point B and the other to a fixed voltage V2 or Vien— AV, where
AV is a small fixed voltage. ['n and I« are the fixed current sources.

Assuming that M3, M4 operate in saturation and follow the ideal square law, we have
L= BL(Va- VO + (Vo= Vo)) (6)

where f is the transconductance parameter for the transistors M3 and M 4. T he voltage of

point C can be obtained from Eq. 7.

,'Il4frv2 2
(Ve+ Vo) = | B{ - (Vo= Vn)~©

Ve = ) (7
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FIG.3 Neuron

(a) Circuit, (b) Simulated Curves Compared with Fitted Ones

Assuming that Vais the input differential voltage,i. e. Va= Vs— Vo, then

etz BV \;'II% - Vi
= e v e §

Tap = Tu+ len

/ 2 er

When I is small, Va> g Ve remains the low saturation voltage. As [ is in—

creasing, V& descends tardily and Voui increases slowly. When Vi< - | » Vou reaches

the high saturation level and remains.

The dash dot line in Fig. 3(b) shows the HSPICE simulation result of the neuron acti-
vation function, with level 47 transistor models being a standard 1. 2um CMOS process.
The fitted sigmoid curve is also shown in Fig. 3(b) by the dash line. The relative error is
not more than 3%.

Assuming that Vou= Vou(li), which is the generated neuron activation function, with
the forward difference method, the approximate derivative voltage Vueiv can be achieved by
subtracting Voewz from Voui, as below,

Vou(Ti)= Vaiu(Va) X Vi(li)
Vaur(Ve = Vo + AV) = Vou( Ve = Vin)

=-— AV X Ragp (9)
_ AV '
V(Irr'u'(]'m] - R_”; X Vﬂllt[!i]l)
= (Vau(Vi= (V= AV)) = Vau( Vi = Vo))
= Vo= Vo (10)

The derivative observed from simulation and that from the simulated neuron activation
function are shown as the solid line and the dot line in Fig. 3(b) . respectively. The relative

error between them is less than 5%.
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The great power of an artificial neural network derives from its adaptability to the un-
known and changing environment. Therefore, good programmability is of the fundamental

(59 Different application need different gain factor o and threshold vector 6,

importance
which can be obtained by varying lwn, Vx and Vr.
The threshold vector 8 can be adjusted by changing the reference current Iwn. When

Iwn increases, the current [w will decrease, which is needed to satisfy that Ve— Ve >

f
12I2/B so that the activation curve will shift to the left. Otherwise, it will shift to the

right. Figure 4(a) shows the simulated neuron transfer functions with different thresh—

olds.
5 s . 25F (b
20F 20
= 4 5
© s R
3 o =2 A '_
ol /, [ TR 1.0
Lo =10RA
-
0.5 - P "
.20 10 0 10 20 0

FIG.4 Programmability of Neuron

{a) Transfer Curve with Different Thresholds, (b) Transfer Curves with Different Gain Factors

The gain factor « can be varied by changing the control voltages V~ and V. When both
transistors M1 and M 2 are working in their respective linear ranges and their sizes are cho—

sen as fi= B2, the relation between [an and Vas can be written as

Tie= I+ I2= .BIV-IH[[VN = V'rl] = [Vp-i— | V'r:l ]] (ll}
so the equivalent linear resistor Ras is written as
Raw = 1 (12)

BL(Vs= Vi) = (Vois | Val)]
Equation (12) shows that the bigger (Vn— Vv) is, the less Riaz would be, i. e. the less the
slope of V& versus I'm would be. Should the Voui increase more slowly, the gain factor would
be smaller. Different activation functions with various gain factors are shown in Fig. 4(b).

Note that the saturation levels of the sigmoid remain constant for different gain values, in
contrast to most of the implementations reported in literatures'”. This ensures that for dif-
ferent gain values, the input linear range of the synapse in subsequent layer can be fully

used.
4 Experiment Results

The non-inear partition problem is used to verify the operation of the proposed circuit
system with 2-1 configuration. Figure 5 illustrates the transient output of the training.
Considered that the low output voltage of the neuron is 0. 52V, the high output voltage is
2.59V and the middle voltage is 1. 56V, the experiment can be described as follows: if the
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two inputs are both lower than 1.56V or

both greater than 1.56V, the output is
2.59V; otherwise, it is 1.56V. The corre— 2.0
sponding inputs of linear A, B, C and D in
Fig. 4 are (1V, 1V), (1V,2V), (2V,1V), ¢

(2V, 2V) respectively and the corresponding 1o fl

targets are 0.52, 2.59, 2.59 and 0.52V re- !

spectively. It can be seen from Fig. 5 that the 0-3 r] 200 400 600 800 1000
circuit system converges within Ims. tps

S COHC]“S]O“S FIG.5 Transient Output Curves of

. . Non-Linear Partition Problem
A circuit system of programmable BP ‘ '

on-chip learning neural network has been designed with analog circuits except the weight
storage unit. It has the merits of simplicity, speediness, low power-consumption and high
density. The whole system comprises a feedforward network, an error back-propagation
network and a weight updating circuit. A novel programmable neuron has been proposed,
which generates the sigmoidal function and its derivative using the forward differential
method. With level 47 transistor models as a standard 1. 2um CM OS process, HSPICE sim—
ulations are done to the neuron. The results show that the relative error between the gen-
erated neuron activation function and its fitted sigmoid function is less than 3% and that
between the derivatives observed from the simulation and the simulated neuron activation
function is less than 5% . Moreover, the threshold and the gain factor of the neuron can be
easily programmed according to different requirements. The simulation of the non-inear
partition problem verifies the superior performance of this BP neural network with on—chip

learning.
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