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Abstract : For t he t reat ment of t he quantum eff ect of charge dist ribution in nanoscale MOS F ETs , a quantum cor2
rection model using L evenberg2Marquardt back2p rop agation neural networks is p resented t hat can p redict t he

quantum densit y f rom t he classical density. The t raining sp eed and accuracy of neural networks wit h diff erent hid2
den layers and numbers of neurons are studied. We conclude t hat high t raining speed and accuracy can be obtained

using neural networks wit h two hidden layers , but t he number of neurons in t he hidden layers does not have a no2
ticeable eff ect . For single and double2gate nanoscale MOSF ETs , our model can easily p redict t he quantum charge

densit y in t he silicon layer , and it agrees closely wit h t he SchrÊdinger2Poisson app roach.
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1 　Introduction

Wit h advances in UL SI , MOSFETs are
shrinking to t he nanoscale regime ,in which the di2
mensions are close to t he De Broglie wavelengt h of
t he charge carriers. Quant um effect s are evident ,
and the inversion layer charge carriers shif t away
f rom t he SiO2 / Si interface[1 ,2 ] ———effect s which
must be considered in device modeling and simula2
tion. The SchrÊdinger2Poisson equations wit h ap2
prop riate boundary conditions can be applied to
st udy such quant um effect s[3 ,4 ] , but t his is a time2
consuming task in p ractice. In t his paper , a back2
propagation neural network (BP NN) is applied to
const ruct a p redictive model for t he quantum cor2
rection of nanoscale MOSFETs t hat can predict t he
quant um charge density f rom t he classical density.
Though t he standard gradient descent algorit hm
for BP NNs p rovides an easy learning method , it
has t hree obvious drawbacks[5 ] . First ,it might con2
verge to some local minimum. Second , initial
weight s and biases influence t he learning speed.
Third ,it converges very slowly when t he outp ut is
close to one. In t his investigation , t he outp ut ( the

ratio of t he quant um charge density to t he classical
density) is close to one when t he point is far away
f rom t he SiO2 / Si interface. The Levenberg2Mar2
quardt algorit hm is used to avoid t hese draw2
backs[ 6 ] .

2 　Quantum correction model

As illust rated in Fig. 1 , t he NN outp ut layer
has one neuron whose outp ut denotes the ratio of
quant um to classical charge density. The neurons in
t he inp ut layer denote parameters such as oxide
t hickness ,silicon layer thickness ,gate voltage ,and
doping level and dept h (distance f rom the SiO2 / Si
interface) ,which determine t he charge density rati2
o . There are some intermediate layers ,called hidden
layers (fir st layer and second layer shown in Fig.
1) .

The neurons in t he inp ut layer receive external
inp ut s ,and t heir weighted sums are t ransferred to
t he neurons in t he first hidden layer . The inp ut nm

i
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Fig. 1 　NN structure

t he neurons in hidden layer m - 1 , S m - 1 is t he num2
ber of neurons in hidden layer m - 1 , w m

i , j is t he
weight between neuron j in hidden layer m - 1 and
neuron i in hidden layer m , and bm

i is t he bias of
neuron i in hidden layer m. The outp ut am

i of neu2
ron i in hidden layer m is

a m
i = f m ( n m

i ) = 2/ (1 + exp ( - 2 n m
i ) ) - 1 (2)

where f m is t he activation f unction.
The outp ut s am

1 , am
2 , ⋯, a

m
S m of t he neurons in

hidden layer m are t ransferred to t he neurons in
hidden layer m + 1 ,and their weighted sums act as
t he inp ut s. The weighted sum of t he outp ut s of
neurons in t he last hidden layer act s as the inp ut to
t he neuron in the outp ut layer . The activation f unc2
tion f O of the neuron in t he outp ut layer takes a
linear form.

The network modeling capability is specified
by t he mean square error (MSE) of t he outp ut in
t he outp ut layer as

MS E =
∑
Q

q = 1

( t q - a q ) 2

Q
=
∑
Q

q = 1
e2

q

Q
(3)

where Q is t he number of t raining vectors , and tq ,

aq ,and eq are t he expected outp ut , comp uted out2
p ut ,and t he error for t raining vector q , respective2
ly.

In order to obtain t he expected outp ut for any
external inp ut s ,NNs need to be t rained many times
using several t raining vectors consisting of inp ut s
and t he corresponding outp ut s to determine the
weight s w m

i , j and biases bm
i corresponding to the

highest p rediction accuracy.

In t he t raining process , t he weight and bias
vector x is adjusted by[7 ]

Δx k = - ( J T ( x k ) J ( x k ) +μk I) - 1 J T ( x k ) e ( x k )

(4)

where k is t he iteration number , J is t he J acobian
mat rix of t he error vector e to weight and bias vec2
tor x , I is a unit mat rix ,and μ is a scalar quantity
used for cont rolling t he search direction and step .
e , x ,and J are given in Eqs. (5～7) ,respectively.

e T = [ e1 e2 ⋯ e Q ] (5)
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Here R is t he number of neurons in the inp ut lay2
er , M denotes the outp ut layer ,and bM

1 is t he bias of
t he neuron in t he outp ut layer .
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　　The element s of J are comp uted by Eqs. (8)

and (9) .
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Here um
i , h is determined by Eq. (12) .

U M
q = - F

·
M ( n M

q ) (10)

U m
q = F

·
( n m

q ) ( W m +1 ) T U m + 1
q (11)

U m = [ U m
1 | U m

2 | ⋯| U m
Q ] (12)

3 　Training and optimizing NNs

The t raining speed and prediction accuracy of
NNs depend on t he number of hidden layers and
t he number of neurons in t he hidden layers. NNs
with high t raining speed and p rediction accuracy
can be obtained through t raining and optimization
with many t raining vectors , including the ratio of
quant um charge density to classical charge density.
The t raining vectors can be obtained by solving the
coupled SchrÊdinger2Poisson equations self2con2
sistently for MOSFETs with a variety of oxide
t hicknesses , silicon layer t hicknesses , doping lev2
els ,and applied gate voltages.

When solving t he coupled SchrÊdinger2Poisson
equations , t hey must be discretized by the finite
difference met hod first . Then t he Poisson equation
is solved to obtain the classical potential dist ribu2
tion by an iterative method. The potential is used
to solve the SchrÊdinger equation along t he direc2
tion vertical to the gate[ 8～10 ] . The new charge den2
sity can be calculated with wavef unctions and ener2
gy levels obtained f rom t he SchrÊdinger equation.
The new charge density is plugged into t he Poisson
equation to solve t he new potential . The
SchrÊdinger equation is solved again with the new
potential . These step s are repeated iteratively until

t he convergence criterion is met [11～14 ] .
The oxide t hickness of MOSFETs used for

t raining and optimizing NNs varies f rom 1 to 5nm ,
t he silicon layer t hickness varies f rom 3 to 100nm ,
t he applied gate voltage ranges f rom 015 to 115V ,
and t he doping concent ration varies f rom 1 ×1015 to
5 ×1018 cm - 3 . The ratio of quant um to classical
charge densities at any dept h in t he silicon layers of
MOSFETs is calculated by solving t he coupled
SchrÊdinger2Poisson equations.

The charge density of single gate MOSFETs
in t he silicon layer varies wit h oxide t hickness ,sili2
con layer thickness ,gate voltage ,dept h ,and doping
level . The ratio is also a f unction of t he five param2
eters. Therefore ,t he inp ut layer of t he NNs for sin2
gle gate MOSFETs has five neurons , rep resenting
t he five parameters. Because the value and varying
scope of doping concent ration are very large , t he
logarit hm of doping concent ration is used in t rain2
ing vectors.

The comp uter used to t rain and optimize NNs
is equipped with a Pentium 212 G CPU ,512M mem2
ory ,and 80 G of disk space.

First , NNs with one hidden layer containing
different numbers of neurons were built and
t rained , in which the stopping criterion for MSE
was 10 - 5 ,and t he maximum epoch was 1000. The
t raining curves are shown in Fig. 2 (a) . The num2
bers at the upper right hand corner of the figure re2
present t he number of neurons in t he hidden layer .
It can be seen t hat t he MSE of t he NNs with only
one hidden layer is larger t han 10 - 4 .

Fig. 2 　Training curves with different hidden layers 　(a) NN with one hidden layer ; (b) NN with two hidden layers ;
(c) NN with three hidden layers

　　Then NNs wit h two hidden layers containing
different numbers of neurons were const ructed and
t rained ,in which t he criteria for t he MSE and max2
imum epoch were t he same as above. The t raining

curves are shown in Fig. 2 (b) . The numbers at t he
upper right hand corner of t he figure are t he num2
ber of neurons in the first and second hidden lay2
ers ,respectively. It can be seen t hat t he MSEs of all
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t he NNs meet t he specified stopping criterion of
10 - 5 before t he maximum epoch of 1000 is
reached. Considering the influence of the random
initial weight s and biases ,it can be concluded t hat
t he number of neurons in t he hidden layers has no
evident effect on t he t raining accuracy and speed.

At last ,NNs with t hree hidden layers were set
up and t rained. There were seven and t hree neu2
rons in the first and second hidden layers , respec2
tively ,but t he number of neurons in t he t hird hid2
den layer was different . The criteria for MSE and
t he maximum epoch were the same as above. The
t raining curves are plot ted in Fig. 2 (c) , in which
t he numbers at t he upper right hand corner of the
figure are t he number of neurons in t he t hird hid2
den layer . It can be seen that the MSE of t he NN
with seven neurons in the t hird hidden layer does
not converge to the stopping criterion of 10 - 5 . In
addition , the average t raining time of NNs wit h
t hree hidden layers per epoch is 01057 , while the
corresponding time of NNs wit h two hidden layers
is only 01024.

Thus NNs wit h two hidden layers should be
used to obtain high t raining speed and prediction
accuracy.

The elect ron densities obtained by a t rained
NN with two hidden layers and SchrÊdinger2Pois2
son (SP) approach for two single gate nMOSFETs
against dept h are shown in Fig. 3 (a) . The NN has
seven and three neurons in the first and second hid2
den layers , respectively. The doping level of the
two MOSFETs is N a = 1017 cm - 3 , t he applied gate
voltage is 115V , and t he oxide t hicknesses are 1
and 3nm , respectively. The average relative differ2
ences between t he densities by t he two met hods for
t he two MOSFETs are 014 % and 013 % , respec2
tively.

For two2gate MOSFETs ,t he inp ut layer of the
NNs should have one more neuron rep resenting the
second gate voltage. The NNs were t rained in the
same way as t he single gate MOSFETs. It is also
found t hat high t raining speed and accuracy could
be achieved by NNs wit h two hidden layers ,and the
number of neurons in the hidden layers has no evident
effect . The electron densities obtained by a trained NN
with two hidden layers and SchrÊdinger2Poisson ap2
proach for a two2gate nMOSFET against depth are
shown in Fig. 3 ( b) ,in which the doping level Na is
1017 cm - 3 ,the oxide thickness of both gates is 1nm ,the

applied voltages for the front and back gates are 115
and 1V ,respectively ,and the silicon thickness is 5nm.
The average relative difference between the electron
densities by the two methods is 015 %.

Fig. 3 　Elect ron density by NNs and SP approaches a2
gainst depth 　(a) Single gate ; (b) Double gate

The capacitances of a 20μm ×20μm nMOS capaci2
tor with a 116nm2thick oxide , obtained by the two
methods are presented in Fig. 4. The average relative
difference between the capacitances is 015 %.

Fig. 4 　Capacitance against gate voltage
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4 　Conclusion

BP NNs using the Levenberg2Marquardt algo2
rit hm can be used to const ruct a p redictive model
for t he quant um charge density of MOSFETs.
High t raining speed and prediction accuracy can be
obtained using t he NNs wit h two hidden layers ,but
t he number of neurons in t he hidden layers has no
evident effect . Our model can predict t he quant um
charge densities in t he silicon layer of single and
double2gate MOSFETs in very good agreement
with SchrÊdinger2Poisson equations. The model can
be used in nanoscale MOSFET modeling and simu2
lation.
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基于神经网络的纳米 MOSFET载流子密度量子更正 3
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摘要 : 为了处理纳米 MOSFET 载流子分布的量子效应 ,提出了基于 Levenberg2Marquardt BP 神经网络的量子更
正模型 ,通过载流子的经典密度计算其量子密度 ,并对拥有不同隐层数和隐层神经元数的神经网络的训练速度和
精度进行了研究. 结果表明 :含有 2 个隐层的神经网络具有高的训练速度和精度 ,但隐层神经元数对速度和精度的
影响并不明显 ;对于单栅和双栅纳米 MOSFET ,其载流子量子密度可以通过神经网络进行快速计算 ,其结果与
SchrÊdinger2Poisson 方程的吻合程度很高.

关键词 : 神经网络 ; 量子更正 ; 纳米 MOSFET ; 电荷密度
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