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Abstract : Using a time2dependent quantum2kinetic simulation f or t he non2equilibrium elect ron t ransp ort p roper2
ties of double2bar rie r devices , we have investigated and analyzed t he eff ects of t he relaxation time on elect ron

t ransp ort p roperties in t his kind of low dimensional st ructure . The results show t hat t he relaxation time , w hich

comes f rom t he elect ron2p honon and elect ron2def ect inte ractions ,greatly aff ects t he cur rent2voltage curves ,inclu2
ding t he plateau2like gradient and hyste resis widt h of t he cur rent .
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1 　Introduction

Recently ,t he st udy of elect ron properties has
p rovided a great deal of information about t he na2
t ure of elect ronic devices t hat operate at the nano2
st ruct ure level [1～4 ] . Among t hese devices , double2
barrier resonant t unneling nanodevices have been
extensively st udied due to their potential applica2
tions in various fields[5～7 ] . Modeling elect ron t rans2
port at t he nanoscale poses a great theoretical chal2
lenge ,because in t his region t he semiclassical Bolt2
zmann kinetic equation commonly used to describe
elect ron t ransport is not applicable. Furt hermore ,
t he t ransport p rocesses become non2Markovian due
to t he memory effect s induced by all kinds of scat2
terings ,such as p honon , defect ,and imp urity scat2
terings. Hence t he device current is st rongly de2
pendent on the bias history of t he device[8 ] .

The experimental st udies by several research
group s of double2barrier nanodevices focus on t heir
current2voltage ( I2V ) relationship [9～11 ] . There are
t hree main characteristics in I2V curve among t hese
st ruct ures : fir st , a negative differential resistance ;
second , t he current plateau2like st ruct ure shown in
some experiment s[12 ,13 ] ; and t hird , t he p resence of
single or double current hysteresis regions[14 ,15 ] .

All t hese p henomena st rongly depend on t he st ruc2
t ure of the devices and t he experiment parameters.
In order to explain t he experimental result s , re2
searchers have used quant um t ransport t heo2
ries[16 ,17 ] . Now ,some researchers also use numerical
simulation met hods , such as generalized t unneling
t heory[18 ] and t he Wigner t ransport equation[19～21 ] ,
but t hey do not consider t he effect s f rom the varia2
tion of t he relaxation time.

2 　Theoretical model and method

In this paper ,we st udy t he effect s of t he relax2
ation time on elect ron t ransport p roperties of an
Al GaAs/ GaAs/ Al GaAs double2barrier device u2
sing a time2dependent numerical simulation tech2
nique. The potential st ruct ure of t he device model
is shown in Fig. 1. Our result s show t he effect on
t he I2V curves f rom t he elect ron2p honon ,elect ron2
defect , and elect ron2imp urity interactions. We use
t he Wigner f unction formulation of quantum me2
chanics because it can handle dissipated and open2
boundary systems nat urally[22 ,23 ] . Wit h t he lowest2
order approximation to the scat tering term , t he
time2dependent dynamic equation for quant um
t ransport is
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Fig. 1 　Potential st ructure of the simulated device un2
der a certain bias
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where m 3 is t he elect ron effective mass , x and r are
t he Wigner2Weyl t ransformation coordinates , U is
t he conduction2band edge , L is t he length of the
simulation device ,and f ( x , k) is t he Wigner func2
tion. Appropriately treating scattering in semi2
conductors is very important for obtaining reasona2
ble simulation result s. We employ t he relaxation2
time approximation to deal with t he scat tering. In
t he relaxation time approximation , t he collision
term in the above equation is writ ten as
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whereτis t he relaxation time ,and f 0 is t he equilib2
rium Wigner f unction. The boundary conditions
used are t he same as t hose given by Frenslay[22 ] :
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Each term in Eq. (1) can be discretized ,and for t he
steady state case t he entire equation is writ ten as

( T + V + S) ·f = B (6)

where T , V , and S are t he kinetic , potential , and
scat tering operators ,respectively , B is t he bounda2
ry condition term ,and f is t he Wigner f unction. To
discretize t he p roblem ,we use a picture of a“simu2
lation box”in p hase space. The spatial length of
t he simulation region is L ,and moment um space is

f rom - | Kmax | to | Kmax | . Kmax =
π( N x - 1)

2 L
, where

N x is t he discrete point in position space.
The time2dependent simulation can be found in

Ref . [ 21 ] . The corresponding elect ron and current
density may be obtained by the k2space integral of
t he Wigner f unction. Anot her important equation
in our model is t he Poisson equation ( PE) :

d
d x2 u ( x) =

q2

ε [ N d ( x) - n ( x) ] (7)

whereεis t he dielect ric permittivity , u( x) is t he e2
lect rostatic potential ,q is t he elect ronic charge , N d

( x) is t he concent ration of ionized dopant s ,and n
( x) is t he density of elect rons.

3 　Results and discussion

We have st udied t he effect s of t he relaxation
time on the I2V curves in symmetrical double2bar2
rier st ruct ures using t he t ransient Wigner2Poisson
t ransport met hod. We simulate t he intensity of e2
lect ron2p honon interactions by changing t he relaxa2
tion time. The parameters used in the simulation
are as follows. The momentum and position spaces
are broken into 72 and 86 point s ,respectively. The
donor density is N d = 210 ×1018 cm - 3 ,and t he quan2
t um well and barrier regions are undoped. The
compensation ratio for scat tering calculations is
013 ,and the barrier and quantum well widths are 3
and 5nm , respectively. The simulation box is
55nm ,and t he barrier potential is 317meV. The de2
vice temperat ure is 77 K ,and the effective mass of
an elect ron is assumed to be a constant of
010667 m0 . The doping extends to 3nm before t he
emit ter barrier and after t he collector barrier .

We first st udy t he mean I2V relationship in
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t he forward bias sweep process for the double2bar2
rier st ructure. The result s are shown in Fig. 2 ,
which give t he mean I2V curves for relaxation
times ranging f rom 100 to 1000f s. Here different
relaxation times mean different elect ron2p honon in2
teractions.

Fig. 2 　I2V curves under different relaxation times in

the forward bias sweep

From t he figure ,we can see t hat for different
relaxation times ,t he peak value of current and the
widt h of t he current hysteresis plateau2like st ruc2
t ure are different . Here small relaxation times cor2
respond to st rong scat tering systems ,i . e. ,larger e2
lect ron2p honon and elect ron2defect interactions.
Wit h the increase of relaxation time , t he elect ron
scattering is weakened , and t he current curve
shows t he following main characteristics : (1) The
change t rend of t he main current peak value is
shown in Fig. 3 ( a ) , which shows a nonlinear
change ; ( 2) The main peak2valley ratio increases
with t he relaxation time and shows a linear2like
change ,as shown in Fig. 3 ( b) ; (3) The hysteresis2
peak value of the current increases wit h t he relaxa2
tion time ,and t he change mainly happens in 525f s ,
which is t he relaxation time of the body material ,
as shown in Fig. 3 (c) ; (4) The widt h of t he hyster2
esis of t he current only changes around t he relaxa2
tion time of t he body material ,as shown in Fig. 3
(d) ,and shows stable sat uration for low and high
relaxation times ;and (5) The gradient of t he plat2
eau2like st ruct ure increases gradually wit h t he re2
laxation time.

In our former studies[24 ] ,we pointed out t hat
t here are two factors determining t he plateau2like

Fig. 3 　Effect of relaxation time on the current peak

value (a) ,the main peak2valley ratio ( b) ,the hysteresis

current peak ( c ) , and the width of the plateau2like

st ructure of the current (d)

st ruct ure of the current :one is t he coupling of t he
energy level between t he main quantum well and
t he emitter quant um well , which leads to t he in2
crease of t he current density ; t he other is t he elec2
t ronexciton interactions , such as the elect ron2p ho2
non and elect ron2defect interactions ,which weaken
t he current density. Our t heoretical calculation also
verifies t his viewpoint ,i . e. ,t he st rong interactions
lead to a decrease in t he width and gradient degree
of the plateau2like st ruct ure of t he current , even
making t he plateau2like st ructure of the current
disappear .

For the backward bias sweep process ,Figure 4
shows t hat the relaxation time does not affect t he
po sition of t he current and t he negative differential
conductance ,while only affecting t he height of t he
current peak. The above result s show t hat for t he
devices wit h t he same material ,various fabrication
techniques sometimes lead to t he disappearance of
t he hysteresis of t he current and t he current bista2
bility after t he resonant bias. In order to find t he
hysteresis and bistability of t he current ,apart f rom
decreasing the bias step on t he device ,we must im2
prove the fabrication techniques to obtain good
samples.

In order to explain t he effect of t he relaxation
time on the mean current ,we give the time2depend2
ent current curves and local elect ron density dist ri2
bution for t he different relaxation times in t he for2
ward bias sweep process. Figure 5 shows t he time2
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Fig. 4 　I2V curves under different relaxation times un2
der backward bias sweep 　The inset gives the relaxa2
tion time in the unit of f s

dependent current curves in a bias vol2tage lying in
t he window of t he hysteresis region. From t he fig2
ure ,we can see that t he amplit ude of t he time2de2
pendent current o scillation increases gradually wit h
t he relaxation time. This f urt her verifies t hat t he e2
lect ron2p honon interactions weaken t he o scillation

Fig. 5 　Time2dependent current curves under different

relaxation times under a bias lying in the window of the

current hysteresis region

of t he current ,dest roying t he coupling model of the
energy level . According to our coupling t heory ,the
coupling is due to t he formation of t he emit ter
quant um well , so t he relaxation time must affect
t he dist ribution of t he elect ron density. Figure 6
shows t hat t he exhaust layer of elect ron density
before t he emit ter barrier increases wit h t he relax2
ation time , affecting t he formation of t he emit ter

quant um well .

Fig. 6 　Local elect ron density dist ributions under dif2
ferent relaxation times under a bias lying in the window

of the current hysteresis region

4 　Conclusion

From t he above analysis ,we know t hat t he re2
laxation time (t he mean collision scat tering time of
an elect ron) has an important effect on t he I2V be2
havior in double2barrier st ruct ures. An increase of
elect ron scat tering time leads to an increase in t he
widt h and gradient degree of t he current hysteresis
plateau2like st ruct ure. In a st rong elect ron scat ter2
ing sit uation ,t here is only negative differential con2
ductance ,and the hysteresis of t he current and t he
plateau2like st ruct ure of t he current disappear com2
pletely. At the same time , t he scat tering also af2
fect s the current peak2valley ratio . In order to ob2
tain a large current peak2valley ratio and an obvi2
ous current bistability af ter the resonant bias , we
must fabricate a high2quality double2barrier sam2
ple.
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弛豫时间对双势垒结构电子输运性质的影响 3

戴振宏1 ,2 　倪 　军1 ,

(1 清华大学物理系 原子与分子纳米科学重点实验室 , 北京　100084)

(2 烟台大学物理系 , 烟台　264005)

摘要 : 利用对双势垒器件非平衡态电子输运性质的含时动力学模拟计算 ,分析了弛豫时间对这类低维器件电子输
运特性的影响. 结果表明 ,由于电子2声子、电子2杂质和电子2缺陷等相互作用导致的弛豫时间对器件 I2V 曲线产生
很大的影响 ,即电流滞后类平台结构的倾斜度以及电流滞后区的宽度.
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