反应溅射 CN 薄膜的场发射特性*

林洪峰 谢二庆 张军 颜小琴 陈支勇

(兰州大学物理科学与技术学院,兰州 730000)

摘要:利用反应射频溅射方法在硅单晶衬底上沉积碳氮(CN)薄膜.原子力显微镜(AFM)研究结果表明,CN 薄膜表面覆盖有纳米 CN 锥状物,所制备的 CN 薄膜具有良好的场发射特性,最大发射电流密度达到 $\sim 10 \text{mA/cm}^2$,并且未出现电流饱和现象.薄膜表面的 CN 纳米锥有利于薄膜的场发射,重复测量结果表明,CN 薄膜的发射特性得到改善和提高.

关键词: 反应溅射; CN 薄膜; 场发射

PACC: 5270G; 7900; 7970

中图分类号: O484 文献标识码: A 文章编号: 0253-4177(2006)S0-0211-03

1 引言

大量的研究表明,碳基材料(包括非晶碳、金刚石、类金刚石以及碳纳米管等)通常具有较低的阈值电场和较高的场发射电流密度的特性,在未来场发射平板显示器件领域具有很大的应用潜力[1~4].近几年来,在非晶碳、金刚石等碳基材料中掺入一定量的氮元素,可有效提高其场发射电流,引起人们广泛研究[5,6].已有报道表明,生长过程中的氮分压和退火温度对薄膜的场发射性能有很大影响,适宜的氮分压和退火温度参数最有利于薄膜场发射性能的提高[7,8].基于此,本工作利用射频溅射法在一定的氮分压和衬底温度条件下沉积制备 N 掺杂碳(CN)薄膜,并研究了 CN 薄膜的场发射特性.

2 实验

采用 JS-450 型射频溅射仪制备 CN 薄膜,阴极 靶是高纯石墨. 衬底采用 n 型单晶硅片,衬底温度采用铂铑热电偶测量,本工作选择的衬底温度为 400° C.实验中采用高纯氩气(Ar:99.999%)作为减射气体,高纯氮气(N₂:99.999%)作为反应气体(掺杂气体). 射频电源的频率为 13.56MHz,输出功率为 320W. 衬底与靶之间的距离为 40mm. 实验本底真空压强达 10^{-6} Torr,溅射工作气压为 9×10^{-3} Torr. 溅射沉积 C 薄膜时, Ar 流量为 18sccm,沉积 CN 薄膜时, Ar 和 N₂ 流量均为 18sccm(流量比为 1:1),溅射时间为 1h.

3 结果与讨论

为研究氮掺杂对薄膜样品场发射性能的影响,在相同工艺条件下(Ar 气氛)制备了未掺 N 的碳薄膜样品,并同时测量了未掺 N 和掺 N 样品的场发射特性曲线,如图 1 所示.可以看出,CN 薄膜样品的发射性能明显优于未掺 N 的碳薄膜样品.CN 薄膜的场发射电流达到~7.5mA/cm²,而 C 薄膜相应的发射电流仅~1mA/cm².实验发现,CN 样品在场发射的过程中伴有电流震荡现象,这种现象有点类似于碳纳米管的场发射过程.

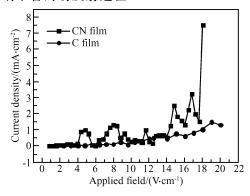


图 1 C 薄膜和 CN 样品的场发射 *I-V* 曲线 Fig. 1 *I-V* plots of C and CN films

用 AFM(SPM-9500J) 对样品表面形貌进行了表征. 采用平板二极式结构研究了 CN 薄膜的场发射特性. 场发射测量在 10^{-6} Torr 的真空条件下进行.

^{*}国家自然科学基金资助项目(批准号:60176002)

[†] 通信作者.Email:xieeq@lzu.edu.cn 2005-10-27 收到

为进一步研究 CN 薄膜的场发射特性,实验重 复测量了样品的场发射电流. 图 2 给出的是对 CN 样品进行三次循环测量的结果.分析表明,第二次测 量得到的发射电流优于第一次的结果,第三次的结 果则优于第二次的结果.随着测量次数的增加,在相 同外加场强的作用下样品的发射电流也相应增加, 这种增加的趋势在较高外场(>15V/μm)的区域更 显突出.值得注意的是,三次测量的结果均存在明显 的发射电流震荡现象,在低发射电流区段尤为明显. 此外,在实验的测量范围内没有出现电流饱和现象. 研究表明,在场发射的测量过程中,由于薄膜表面吸 附气体分子的存在会引起发射电流的震荡波动,但 是重复测量以及较大的电流发射之后,吸附气体的 影响将会减弱^[9]. 经过三次循环测量,CN 样品的发 射电流震荡波动现象还是明显存在,尤其是在发射 电流较小的区域(<3mA/cm²),这可能与薄膜的表 面结构有关.图 3 给出了 CN 薄膜场发射相应的 F-N 曲线, $\lg(I/V^2)$ 和 1/V 不是简单的线性关系,与 传统金属材料的场发射 FN 理论有偏离.可以看出, 在三次测量高场区域(发射电流较大区域)F-N 曲线 存在较好的线性关系.



图 2 CN 样品的场发射 *I-V* 曲线 Fig. 2 *I-V* plots of CN films

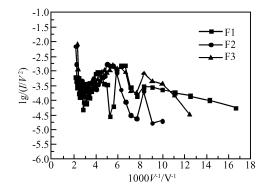


图 3 CN 样品的场发射 F-N 曲线 Fig. 3 F-N plots of CN films

图 4 为 CN 样品的表面形貌 AFM 照片. 可见, 薄膜表面分布有排列规则的锥状突起物,这些锥状 突起物的存在给 CN 薄膜的场发射提供了有利的几 何增强因子,使其表现出良好的场发射性能.分析表 明,CN 薄膜表面的这些锥状物的高度并不完全一 致,有的达 \sim 70nm,有的 \sim 20nm.这种高度的不均 匀会引起局部区域场强的分布不同.对于较高尺寸 的锥状物,由于纵横比较大,在外加电场的作用下, 其尖端容易产生较高的局部场强,从而电子容易从 这些尖端部位发射出来.而对于尺寸相对较低的锥 状物,其尖端处的局域场强也相对较低,要获得较多 数量电子的发射就需要相对较强的外场作用.前面 分析的发射电流震荡现象与薄膜表面的这种结构有 密切的联系.随着外加电场的增强,表面参与电子发 射的部位也逐渐增多.然而,随着发射电流的增大, 局部场强较大的尖端部位由于热效应的增强可能破 坏其尖端部位,导致电子不易发射,这样就产生了电 流的震荡现象.同时,尺寸较低的锥状部位随着外场 的增强越来越多的参与发射电子,使总的发射电流 趋于增大,当外电场施加到某一值的时候,薄膜表面 锥状结构均参与发射,此时的电子发射达到最佳情 况,相应的发射电流也达到最大值.

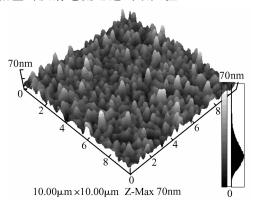


图 4 CN 样品的 AFM 照片 Fig. 4 AFM image of CN film

4 结论

利用反应射频溅射方法在硅单晶衬底上沉积了 CN 薄膜. 分析结果表明,由于 N 的掺入, CN 薄膜表现出良好的场发射性能,场发射性能明显优于未掺杂碳薄膜;另一方面, CN 薄膜表面存在的纳米锥状突起物也有效地提高了 CN 薄膜的场发射性能.

参考文献

[1] Milne W I, Tsai J T H, Teo K B K. Novel field emission structure based on tetrahedrally bonded amorphous carbon. Diam Relat Mater, 2003, 12; 195

- [2] Zhang W J, Meng X M, Chan C Y, et al. Oriented singlecrystal diamond cones and their arrays. Appl Phys Lett, 2003,82;2622
- [3] Inoue T, Ogletree D F, Salmeron M. Field emission study of diamond-like carbon films with scanned-probe field-emission force microscopy. Appl Phys Lett, 2000, 76:2961
- [4] Matsumoto K, Kinosita S, Gotoh Y, et al. Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition. Appl Phys Lett, 2001, 78:539
- [5] Amaratunga G A J. Silva S R P. Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes. Appl Phys Lett, 1996, 68:2529

- [6] Sowers A T, Ward B L, English S L, et al. Field emission properties of nitrogen-doped diamond films. J Appl Phys, 1999,86,3973
- [7] Fogarassy E, Szorenyi T, Antoni F, et al. Influence of the nitrogen content on the field emission properties of a-CN_x films prepared by pulsed laser deposition. Appl Surf Sci, 2002.197/198.316
- [8] Yu G Q.Lee S H.Leea J J. Effects of thermal annealing on amorphous carbon nitride films by r.f. PECVD. Diam Relat Mater, 2002, 11:1633
- [9] Semet V.Binh V T, Vincent P. et al. Field electron emission from individual carbon nanotubes of a vertically aligned array. Appl Phys Lett, 2002, 81:343

Field Emission from Reaction Sputtering CN Films*

Lin Hongfeng, Xie Erqing[†], Zhang Jun, Yan Xiaoqin, and Chen Zhiyong

(School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China)

Abstract: Carbon nitride (CN) films are deposited with reaction sputtering method. Nano-cone arrays are formed and distributed large areas on the surface of CN films with this method. CN films show excellent field emission behavior with a current density $\sim 10 \, \text{mA/cm}^2$ at $15.5 \, \text{V/}\mu\text{m}$ due to their unique geometrical configurations. The field emission properties of the CN films can also be meliorated through circular survey experiments, which may lead to CN films be a great potential cold cathode materials for future field emission display.

Key words: reaction sputtering; CN films; field emission

PACC: 5270G; 7900; 7970

Article ID: 0253-4177(2006)S0-0211-03

^{*} Project supported by the National Natural Science Foundation of China(No.60176002)

[†] Corresponding author. Email: xieeq@lzu.edu.cn Received 27 October 2005