SEMICONDUCTOR MATERIALS

Reduced defect density in microcrystalline silicon by hydrogen plasma treatment

Jingyan Li, Xiangbo Zeng, Hao Li, Xiaobing Xie, Ping Yang, Haibo Xiao, Xiaodong Zhang and Qiming Wang

+ Author Affiliations

 Corresponding author: Zeng Xiangbo, xbzeng@semi.ac.cn

PDF

Abstract: The effect of hydrogen plasma treatment (HPT) during the initial stage of microcrystalline silicon (μc-Si) growth on the defect density of μc-Si has been investigated. Lower absorption coefficient in the 0.8-1.0 eV indicated less defect density compared to its counterpart without HPT. The infrared spectroscopy of μc-Si with HPT shows an increase in 2040 cm-1, which reveals more Si-H in the amorphous/crystalline interfaces. We ascribe the decrease of defect density to hydrogen passivation of the dangling bonds. Improved performance of μc-Si solar cell with HPT is due to the reduced defect density.

Key words: microcrystalline silicondefect densityhydrogen plasma treatmentpassivation



[1]
Klein S, Finger F, Carius R. Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells. Thin Solid Films, 2003, 430(1/2):202 http://www.sciencedirect.com/science/article/pii/S0040609003001111
[2]
Bugnon G, Feltrin A, Meillaud F. Influence of pressure and silane depletion on microcrystalline silicon material quality and solar cell performance. J Appl Phys, 2009, 105(6):064507 doi: 10.1063/1.3095488
[3]
Poortmans J, Vladimir. Thin film solar cells fabrication, characterization and applications. England: John Wiley & Sons, 2006
[4]
Smets A H M, Matsui T, Kondo M. High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime. J Appl Phys, 2008, 104(3):034508 doi: 10.1063/1.2961334
[5]
Chen Y S, Wang J H. The effect of transient depletion of source gases on the properties of microcrystalline silicon solar cells. Sol Energy, 2009, 83(9):1454 doi: 10.1016/j.solener.2009.03.015
[6]
Ide Y, Saito Y, Yamada A, et al. 2-step growth method and microcrystalline silicon thin film solar cells prepared by hot wire cell method. Jpn J Appl Phys, 2004, 43(5A):2419 doi: 10.1143/JJAP.43.2419
[7]
Chantana J, Tsutsui Y, Sobajima Y. Importance of starting procedure for film growth in substrate-type microcrystalline-silicon solar cells. Jpn J Appl Phys, 2011, 50(4):045806 doi: 10.1143/JJAP.50.045806
[8]
Ihara H, Nozaki H. Improvement of hydrogenated amorphous silicon n-i-p diode performance by H2 plasma treatment for i/p interface. Jpn J Appl Phys, 1990, 29(12):2159 http://www.academia.edu/1811567/Amorphous_Silicon_Nanocone_Array_Solar_Cell
[9]
Ambrico M, Schiavulli L, Ligonzo T. Optical absorption and electrical conductivity measurements of microcrystalline silicon layers grown by SiF4/H plasma on glass substrates. Thin Solid Films, 2001, 383(1/2):200 http://www.academia.edu/14105049/Optical_absorption_and_electrical_conductivity_measurements_of_microcrystalline_silicon_layers_grown_by_SiF_rH_plasma_on_glass_4_2
[10]
Langford A A, Fleet M L, Nelson B P. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys Rev B, 1992, 45(23):13367 doi: 10.1103/PhysRevB.45.13367
[11]
Kaneko T, Wakagi M, Onisawa K. Change in crystalline morphologies of polycrystalline silicon films prepared by radiofrequency plasmaenhanced chemical vapor deposition using SiF4 + H2 gas mixture at 350℃. Appl Phys Lett, 1994, 64(14):1865 doi: 10.1063/1.111781
[12]
Han D, Wang K, Owens J M. Hydrogen structures and the optoelectronic properties in transition films from amorphous to microcrystalline silicon prepared by hot-wire chemical vapor deposition. J Appl Phys, 2003, 93(7):3776 doi: 10.1063/1.1555680
[13]
Bronneberg A C, Cankoy N, Sanden M C M. Ion-induced effects on grain boundaries and a-Si:H tissue quality in microcrystalline silicon films. J Vac Sci Technol A, 2012, 30(6):061512 doi: 10.1116/1.4766193
[14]
Keudell A V, Abelson J R. The interaction of atomic hydrogen with very thin amorphous hydrogenated silicon films analyzed using in situ real time infrared spectroscopy:reaction rates and the formation of hydrogen platelets. J Appl Phys, 1998, 84(1):489 doi: 10.1063/1.368082
[15]
Marra D C, Edelberg E A, Naone R L. Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. J Vac Sci Technol A, 1998, 16(6):3199 doi: 10.1116/1.581520
[16]
Xu L, Li Z P, Wen C. Bonded hydrogen in nanocrystalline silicon photovoltaic materials:impact on structure and defect density. J Appl Phys, 2011, 110(6):064315 doi: 10.1063/1.3638712
Fig. 1.  Absorption coefficient of samples deposited with and without hydrogen plasma treatment

Fig. 2.  Typical IR spectra obtained in the wagging (500-750 cm$^{-1}$) vibration modes for films with (solid square) and without (open square) HPT. The arrow shows an increase of Si-H wagging absorption with HPT

Fig. 3.  IR spectra obtained in the hydride stretching (1850-2230 cm$^{-1}$) modes of $\mu $c-Si films. Inset shows deconvolution of the IR spectra. The arrow shows an increase of MSM absorption with HPT

Fig. 4.  QE for $\mu $c-Si n-i-p solar cells with (solid square) and without (open square) HPT. The arrow shows an increase of QE in long wavelength range (500-850 nm) with HPT

Table 1.   Experimental results of $\mu $c-Si deposited with and without HPT

Table 2.   Experimental results of solar cells deposited with and without HPT

[1]
Klein S, Finger F, Carius R. Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells. Thin Solid Films, 2003, 430(1/2):202 http://www.sciencedirect.com/science/article/pii/S0040609003001111
[2]
Bugnon G, Feltrin A, Meillaud F. Influence of pressure and silane depletion on microcrystalline silicon material quality and solar cell performance. J Appl Phys, 2009, 105(6):064507 doi: 10.1063/1.3095488
[3]
Poortmans J, Vladimir. Thin film solar cells fabrication, characterization and applications. England: John Wiley & Sons, 2006
[4]
Smets A H M, Matsui T, Kondo M. High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime. J Appl Phys, 2008, 104(3):034508 doi: 10.1063/1.2961334
[5]
Chen Y S, Wang J H. The effect of transient depletion of source gases on the properties of microcrystalline silicon solar cells. Sol Energy, 2009, 83(9):1454 doi: 10.1016/j.solener.2009.03.015
[6]
Ide Y, Saito Y, Yamada A, et al. 2-step growth method and microcrystalline silicon thin film solar cells prepared by hot wire cell method. Jpn J Appl Phys, 2004, 43(5A):2419 doi: 10.1143/JJAP.43.2419
[7]
Chantana J, Tsutsui Y, Sobajima Y. Importance of starting procedure for film growth in substrate-type microcrystalline-silicon solar cells. Jpn J Appl Phys, 2011, 50(4):045806 doi: 10.1143/JJAP.50.045806
[8]
Ihara H, Nozaki H. Improvement of hydrogenated amorphous silicon n-i-p diode performance by H2 plasma treatment for i/p interface. Jpn J Appl Phys, 1990, 29(12):2159 http://www.academia.edu/1811567/Amorphous_Silicon_Nanocone_Array_Solar_Cell
[9]
Ambrico M, Schiavulli L, Ligonzo T. Optical absorption and electrical conductivity measurements of microcrystalline silicon layers grown by SiF4/H plasma on glass substrates. Thin Solid Films, 2001, 383(1/2):200 http://www.academia.edu/14105049/Optical_absorption_and_electrical_conductivity_measurements_of_microcrystalline_silicon_layers_grown_by_SiF_rH_plasma_on_glass_4_2
[10]
Langford A A, Fleet M L, Nelson B P. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys Rev B, 1992, 45(23):13367 doi: 10.1103/PhysRevB.45.13367
[11]
Kaneko T, Wakagi M, Onisawa K. Change in crystalline morphologies of polycrystalline silicon films prepared by radiofrequency plasmaenhanced chemical vapor deposition using SiF4 + H2 gas mixture at 350℃. Appl Phys Lett, 1994, 64(14):1865 doi: 10.1063/1.111781
[12]
Han D, Wang K, Owens J M. Hydrogen structures and the optoelectronic properties in transition films from amorphous to microcrystalline silicon prepared by hot-wire chemical vapor deposition. J Appl Phys, 2003, 93(7):3776 doi: 10.1063/1.1555680
[13]
Bronneberg A C, Cankoy N, Sanden M C M. Ion-induced effects on grain boundaries and a-Si:H tissue quality in microcrystalline silicon films. J Vac Sci Technol A, 2012, 30(6):061512 doi: 10.1116/1.4766193
[14]
Keudell A V, Abelson J R. The interaction of atomic hydrogen with very thin amorphous hydrogenated silicon films analyzed using in situ real time infrared spectroscopy:reaction rates and the formation of hydrogen platelets. J Appl Phys, 1998, 84(1):489 doi: 10.1063/1.368082
[15]
Marra D C, Edelberg E A, Naone R L. Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. J Vac Sci Technol A, 1998, 16(6):3199 doi: 10.1116/1.581520
[16]
Xu L, Li Z P, Wen C. Bonded hydrogen in nanocrystalline silicon photovoltaic materials:impact on structure and defect density. J Appl Phys, 2011, 110(6):064315 doi: 10.1063/1.3638712
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2158 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 05 March 2013 Revised: 08 April 2013 Online: Published: 01 October 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jingyan Li, Xiangbo Zeng, Hao Li, Xiaobing Xie, Ping Yang, Haibo Xiao, Xiaodong Zhang, Qiming Wang. Reduced defect density in microcrystalline silicon by hydrogen plasma treatment[J]. Journal of Semiconductors, 2013, 34(10): 103006. doi: 10.1088/1674-4926/34/10/103006 J Y Li, X B Zeng, H Li, X B Xie, P Yang, H B Xiao, X D Zhang, Q M Wang. Reduced defect density in microcrystalline silicon by hydrogen plasma treatment[J]. J. Semicond., 2013, 34(10): 103006. doi: 10.1088/1674-4926/34/10/103006.Export: BibTex EndNote
      Citation:
      Jingyan Li, Xiangbo Zeng, Hao Li, Xiaobing Xie, Ping Yang, Haibo Xiao, Xiaodong Zhang, Qiming Wang. Reduced defect density in microcrystalline silicon by hydrogen plasma treatment[J]. Journal of Semiconductors, 2013, 34(10): 103006. doi: 10.1088/1674-4926/34/10/103006

      J Y Li, X B Zeng, H Li, X B Xie, P Yang, H B Xiao, X D Zhang, Q M Wang. Reduced defect density in microcrystalline silicon by hydrogen plasma treatment[J]. J. Semicond., 2013, 34(10): 103006. doi: 10.1088/1674-4926/34/10/103006.
      Export: BibTex EndNote

      Reduced defect density in microcrystalline silicon by hydrogen plasma treatment

      doi: 10.1088/1674-4926/34/10/103006
      Funds:

      the National Natural Science Foundation of China 51072194

      the National High Technology Research and Development Program of China 2011AA050504

      Project supported by the National High Technology Research and Development Program of China (No. 2011AA050504), the National Natural Science Foundation of China (No. 51072194), and the Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (No. 12JG01)

      the Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences 12JG01

      More Information
      • Corresponding author: Zeng Xiangbo, xbzeng@semi.ac.cn
      • Received Date: 2013-03-05
      • Revised Date: 2013-04-08
      • Published Date: 2013-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return