SEMICONDUCTOR DEVICES

Fabrication of a microstrip patch antenna integrated in low-resistance silicon wafer using a BCB dielectric

Tianxi Wang1, 2, Mei Han1, 2, Gaowei Xu1, and Le Luo1

+ Author Affiliations

 Corresponding author: Xu Gaowei, xugw@mail.sim.ac.cn

PDF

Abstract: This paper demonstrates a technique for microstrip patch antenna fabrication using a benzocyclobutene (BCB) dielectric. The most distinctive feature of this method is that the antenna is integrated on a low-resistance silicon wafer, and is fully compatible with the microwave multi-chip module packaging process. Low-permittivity dielectric BCB with excellent thermal and mechanical stability is employed to enhance the performance of the antenna. The as-fabricated antenna is characterized, and the experimental results show that the antenna resonates at 14.9 GHz with a 1.67% impedance bandwidth.

Key words: antennasiliconBCBpackage



[1]
Rao R T, Madhavan S. Introduction to system-on-package (SoP):miniaturization of the entire system. USA:McGraw-Hill Prof Med/Tech, 2008, 3:81
[2]
Carchon G J, Raedt W D, Beyne E. Wafer-level packaging technology for high-Q on-chip inductors and transmission lines. IEEE Trans Microw Theory Tech, 2004, 52:1244 doi: 10.1109/TMTT.2004.825656
[3]
Ding X Y, Geng F, Luo L. Process development in metal/BCB multilayer interconnections of MMCM with embedded chip in Si substrate Microelectron Eng, 2009, 86: 335
[4]
Geng F, Ding X Y, Xu G W, et al. A wafer-scale packaging structure with monolithic microwave integrated circuits and passives embedded in a silicon substrate for multichip modules for radio frequency applications. J Micromech Microeng, 2009, 19:105011 doi: 10.1088/0960-1317/19/10/105011
[5]
Carrillo-Ramirez R, Jackson R W. A technique for interconnecting millimeter wave integrated circuits using BCB and bump bonds. IEEE Microw Wirel Compon Lett, 2003, 13:196 doi: 10.1109/LMWC.2003.811677
[6]
Ju C W, Park S S, Kim S J, et al. Effects of O2C2F6 plasma descum with RF cleaning on via formation in MCM-D substrate using photosensitive BCB. Electronic Components and Technology Conf. Orlando, FL, USA, 2001:1216
[7]
Tang J J, Ding X Y, Geng F, et al. Wafer-level multilayer integration of RF passives with thick BCB/metal interlayer connection in silicon-based SiP. Microsyst Technol, 2012, 18:119 doi: 10.1007/s00542-011-1370-3
[8]
Tilmans H A C, De Raedt W, Beyne E. MEMS for wireless communications:'from RF-MEMS components to RF-MEMS-SiP'. J Micromech Microeng, 2003, 13:S139 http://cat.inist.fr/?aModele=afficheN&cpsidt=14901609
[9]
Tang J J, Sun X W, Luo L. A wafer level multi-chip module process with thick photosensitive benzocyclobutene as dielectric for microwave application. J Micromech Microeng, 2011, 21:065035 doi: 10.1088/0960-1317/21/6/065035
[10]
Wadell B C. Transmission-line design handbook. Boston:Artech House, 1991 http://ci.nii.ac.jp/ncid/BA51343143
Fig. 1.  Schematic diagram of a system on package (SoP)[1].

Fig. 2.  (a) Schematic diagram of the MMCM packaging structure, and (b) the microstrip patch antenna integrated with MMIC in a package.

Fig. 3.  Schematic diagram of the microstrip patch antenna.

Fig. 4.  Cross-sectional process flow, showing the main fabrication steps for the proposed antenna device. (a) A 3 $\mu $m ground plane is electroplated after seed layer sputtering. (b) Gold stub bumps are formed, serving as an interlayer interconnection. (c) A BCB layer is coated and cured on the surface of the substrate as the dielectric film. (d) The patch, feed line and pads are formed in another metal layer, on top of the BCB.

Fig. 5.  Photograph of the fabricated antennas.

Fig. 6.  Simulated 3D radiation patterns at 15 GHz

Fig. 7.  Simulated antenna radiation pattern at $\phi $ = 0 deg and $\phi$ = 90 deg

Fig. 8.  Comparison of measured and simulated return loss (S11) for the fabricated antenna.

Fig. 9.  Comparison of measured and simulated VSWR for the asfabricated antenna.

Table 1.   The parameters of the microstrip patch antenna.

[1]
Rao R T, Madhavan S. Introduction to system-on-package (SoP):miniaturization of the entire system. USA:McGraw-Hill Prof Med/Tech, 2008, 3:81
[2]
Carchon G J, Raedt W D, Beyne E. Wafer-level packaging technology for high-Q on-chip inductors and transmission lines. IEEE Trans Microw Theory Tech, 2004, 52:1244 doi: 10.1109/TMTT.2004.825656
[3]
Ding X Y, Geng F, Luo L. Process development in metal/BCB multilayer interconnections of MMCM with embedded chip in Si substrate Microelectron Eng, 2009, 86: 335
[4]
Geng F, Ding X Y, Xu G W, et al. A wafer-scale packaging structure with monolithic microwave integrated circuits and passives embedded in a silicon substrate for multichip modules for radio frequency applications. J Micromech Microeng, 2009, 19:105011 doi: 10.1088/0960-1317/19/10/105011
[5]
Carrillo-Ramirez R, Jackson R W. A technique for interconnecting millimeter wave integrated circuits using BCB and bump bonds. IEEE Microw Wirel Compon Lett, 2003, 13:196 doi: 10.1109/LMWC.2003.811677
[6]
Ju C W, Park S S, Kim S J, et al. Effects of O2C2F6 plasma descum with RF cleaning on via formation in MCM-D substrate using photosensitive BCB. Electronic Components and Technology Conf. Orlando, FL, USA, 2001:1216
[7]
Tang J J, Ding X Y, Geng F, et al. Wafer-level multilayer integration of RF passives with thick BCB/metal interlayer connection in silicon-based SiP. Microsyst Technol, 2012, 18:119 doi: 10.1007/s00542-011-1370-3
[8]
Tilmans H A C, De Raedt W, Beyne E. MEMS for wireless communications:'from RF-MEMS components to RF-MEMS-SiP'. J Micromech Microeng, 2003, 13:S139 http://cat.inist.fr/?aModele=afficheN&cpsidt=14901609
[9]
Tang J J, Sun X W, Luo L. A wafer level multi-chip module process with thick photosensitive benzocyclobutene as dielectric for microwave application. J Micromech Microeng, 2011, 21:065035 doi: 10.1088/0960-1317/21/6/065035
[10]
Wadell B C. Transmission-line design handbook. Boston:Artech House, 1991 http://ci.nii.ac.jp/ncid/BA51343143
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2970 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 21 March 2013 Revised: 13 April 2013 Online: Published: 01 October 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tianxi Wang, Mei Han, Gaowei Xu, Le Luo. Fabrication of a microstrip patch antenna integrated in low-resistance silicon wafer using a BCB dielectric[J]. Journal of Semiconductors, 2013, 34(10): 104008. doi: 10.1088/1674-4926/34/10/104008 T X Wang, M Han, G W Xu, L Luo. Fabrication of a microstrip patch antenna integrated in low-resistance silicon wafer using a BCB dielectric[J]. J. Semicond., 2013, 34(10): 104008. doi: 10.1088/1674-4926/34/10/104008.Export: BibTex EndNote
      Citation:
      Tianxi Wang, Mei Han, Gaowei Xu, Le Luo. Fabrication of a microstrip patch antenna integrated in low-resistance silicon wafer using a BCB dielectric[J]. Journal of Semiconductors, 2013, 34(10): 104008. doi: 10.1088/1674-4926/34/10/104008

      T X Wang, M Han, G W Xu, L Luo. Fabrication of a microstrip patch antenna integrated in low-resistance silicon wafer using a BCB dielectric[J]. J. Semicond., 2013, 34(10): 104008. doi: 10.1088/1674-4926/34/10/104008.
      Export: BibTex EndNote

      Fabrication of a microstrip patch antenna integrated in low-resistance silicon wafer using a BCB dielectric

      doi: 10.1088/1674-4926/34/10/104008
      Funds:

      the National Major Fundamental Research Program of China 2009CB320207

      Project supported by the National Major Fundamental Research Program of China (No. 2009CB320207) and the National Science and Technology Major Project-Research, China (No. 2011ZX02602)

      the National Science and Technology Major Project-Research, China 2011ZX02602

      More Information
      • Corresponding author: Xu Gaowei, xugw@mail.sim.ac.cn
      • Received Date: 2013-03-21
      • Revised Date: 2013-04-13
      • Published Date: 2013-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return