SEMICONDUCTOR INTEGRATED CIRCUITS

A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors

Tao Yin, Chong Zhang, Huanming Wu, Qisong Wu and Haigang Yang

+ Author Affiliations

 Corresponding author: Yang Haigang, yanghg@mail.ie.ac.cn

PDF

Abstract: This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive micro-electro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35 μm CMOS process and is 2.1×2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF/$\sqrt {{\rm{Hz}}}$ capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/℃ after optimized compensation.

Key words: capacitive readout circuittemperature compensationcharge sensitive amplifier (CSA)MEMS sensor



[1]
Yazdi N, Kulah H, Najafi K. Precision readout circuits for capacitive micro accelerometers. Proc 3rd IEEE Sensors, Vienna, 2004, 1:28 http://ieeexplore.ieee.org/document/1426091/
[2]
Saukoski M, Aaltonen L, Salo T, et al. Fully integrated charge sensitive amplifier for readout of micromechanical capacitive sensors. IEEE International Symposium on Circuits and Systems (ISACS), Japan, 2005:5377 http://ieeexplore.ieee.org/document/1465851/
[3]
Boser B E. Capacitive interfaces for monolithic integrated sensors. RF Analog-to-Digital Converters, Sensor and Actuator Interfaces, Low-Noise Oscillators, PLLs and Synthesizers, Kluwer, 1997:220 doi: 10.1007%2F978-1-4757-2602-2_9
[4]
Geen J, Sherman S, Chang J, et al. Single chip surface micromachined integrated gyroscope with 50°/h Allan deviation. IEEE J Solid-State Circuits, 2002, 37(12):1860 doi: 10.1109/JSSC.2002.804345
[5]
Wu J, Fedder G K, Carley L R. A low-noise low-offset capacitive sensing amplifier for a 50μg/$\sqrt {{\rm{Hz}}}$ monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuits, 2004, 39(5):722 doi: 10.1109/JSSC.2004.826329
[6]
Rodjegard H, Loof A. A differential charge-transfer readout circuit for multiple output capacitive sensors. Sensors and Actuators, 2005, A119:309 http://cat.inist.fr/?aModele=afficheN&cpsidt=16709705
[7]
Ferguson M I, Keymeulen D, Peay C, et al. Effect of temperature on MEMS vibratory rate gyroscope. IEEE Aerospace Conference, 2005:1 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000001559561
[8]
Xia D, Chen S, Wang S, et al. Microgyroscope temperature effects and compensation-control methods. Sensors, 2009, 9:8349 doi: 10.3390/s91008349
[9]
Melexis Inc. Application note, temperature compensation improvement of MLX90609. www. melexis. com
[10]
Trieu H K, Kordas N, Mokwa W. Fully CMOS compatible capacitive differential pressure sensors with on-chip programmabilities and temperature compensation. IEEE International Conference on Sensors, Orlando, USA, 2002:1451 http://ieeexplore.ieee.org/document/1037336/?reload=true&arnumber=1037336&contentType=Conference%20Publications
[11]
Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84:1584 doi: 10.1109/5.542410
[12]
Zhang Chong, Wu Qisong, Yin Tao, et al. Noise and mismatch optimization for capacitive MEMS readout. Journal of Semiconductors, 2009, 30(11):115003 doi: 10.1088/1674-4926/30/11/115003
[13]
Aragonés R, Oliver J, Ferrerl C. A 23 ppm/℃ readout circuitry improvement for capacitive sensor acquisition platforms. IEEE 5th International Conference on Sensing Technology, 2011:628
[14]
Dei M, Marchetti E, Bruschi P. A Micro power capacitive sensor readout channel based on the chopper modulation technique. IEEE Prime Conference, 2007:113
[15]
Zhu Z, Wei W, Liu L, et al. A high precision CMOS voltage reference without resistors. Journal of Circuits, Systems, and Computers, 2012, 21(3):1250019 doi: 10.1142/S0218126612500193
[16]
AD7745/AD7746, 24-bit capacitance-to-digital converter with temperature sensor. www. analog. com
[17]
Chen Y, Jiao J, Dong L, et al. Micromachined bar-structure gyroscope with high q-factors for both driving and sensing mode at atmospheric pressure. IEEE 2nd Conference on Sensors Proceedings, Toronto, Canada, Oct, 2003, 1:461
[18]
Ko H, Cho D D. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sensors and Actuators A, 2010, 158:72 doi: 10.1016/j.sna.2009.12.017
Fig. 1.  Block diagram of the readout circuit.

Fig. 2.  Equivalent circuit of the CSA for noise analysis.

Fig. 3.  Thermal noise contributions from the OTA to the CSA with different $x=\Delta C_{\rm in}$/$C_{\rm T}$.

Fig. 4.  (a) Block diagram of the charge sensing amplifier. (b) Schematic of the OTA in the CSA.

Fig. 5.  Simulation results of the input and output common mode potentials of the CSA.

Fig. 6.  Schematic of the compensation voltage generator.

Fig. 7.  Simulation results of (a) $V_{\rm d}$ amplitude and CSA sensitivity versus temperature (normalized to the value at 27 ℃) and (b) readout circuit optimized sensitivity temperature drift.

Fig. 8.  Micrograph of the implemented readout circuit.

Fig. 9.  Transient response to stepwise capacitive input.

Fig. 10.  Circuit output versus input differential capacitance.

Fig. 11.  The normalized sensitivity amplitude-frequency characteristic of the readout circuit.

Fig. 12.  Measured readout circuit sensitivity versus temperature.

Fig. 13.  Measured output noise PSD with/without temperature compensation.

Fig. 14.  Scale factor and residual error of the micro-gyroscope with the proposed readout circuit.

Fig. 15.  Output noise of the micro-gyroscope with the proposed readout circuit.

Table 1.   Summary of the readout circuits' specifications and comparison with previous work.

[1]
Yazdi N, Kulah H, Najafi K. Precision readout circuits for capacitive micro accelerometers. Proc 3rd IEEE Sensors, Vienna, 2004, 1:28 http://ieeexplore.ieee.org/document/1426091/
[2]
Saukoski M, Aaltonen L, Salo T, et al. Fully integrated charge sensitive amplifier for readout of micromechanical capacitive sensors. IEEE International Symposium on Circuits and Systems (ISACS), Japan, 2005:5377 http://ieeexplore.ieee.org/document/1465851/
[3]
Boser B E. Capacitive interfaces for monolithic integrated sensors. RF Analog-to-Digital Converters, Sensor and Actuator Interfaces, Low-Noise Oscillators, PLLs and Synthesizers, Kluwer, 1997:220 doi: 10.1007%2F978-1-4757-2602-2_9
[4]
Geen J, Sherman S, Chang J, et al. Single chip surface micromachined integrated gyroscope with 50°/h Allan deviation. IEEE J Solid-State Circuits, 2002, 37(12):1860 doi: 10.1109/JSSC.2002.804345
[5]
Wu J, Fedder G K, Carley L R. A low-noise low-offset capacitive sensing amplifier for a 50μg/$\sqrt {{\rm{Hz}}}$ monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuits, 2004, 39(5):722 doi: 10.1109/JSSC.2004.826329
[6]
Rodjegard H, Loof A. A differential charge-transfer readout circuit for multiple output capacitive sensors. Sensors and Actuators, 2005, A119:309 http://cat.inist.fr/?aModele=afficheN&cpsidt=16709705
[7]
Ferguson M I, Keymeulen D, Peay C, et al. Effect of temperature on MEMS vibratory rate gyroscope. IEEE Aerospace Conference, 2005:1 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000001559561
[8]
Xia D, Chen S, Wang S, et al. Microgyroscope temperature effects and compensation-control methods. Sensors, 2009, 9:8349 doi: 10.3390/s91008349
[9]
Melexis Inc. Application note, temperature compensation improvement of MLX90609. www. melexis. com
[10]
Trieu H K, Kordas N, Mokwa W. Fully CMOS compatible capacitive differential pressure sensors with on-chip programmabilities and temperature compensation. IEEE International Conference on Sensors, Orlando, USA, 2002:1451 http://ieeexplore.ieee.org/document/1037336/?reload=true&arnumber=1037336&contentType=Conference%20Publications
[11]
Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84:1584 doi: 10.1109/5.542410
[12]
Zhang Chong, Wu Qisong, Yin Tao, et al. Noise and mismatch optimization for capacitive MEMS readout. Journal of Semiconductors, 2009, 30(11):115003 doi: 10.1088/1674-4926/30/11/115003
[13]
Aragonés R, Oliver J, Ferrerl C. A 23 ppm/℃ readout circuitry improvement for capacitive sensor acquisition platforms. IEEE 5th International Conference on Sensing Technology, 2011:628
[14]
Dei M, Marchetti E, Bruschi P. A Micro power capacitive sensor readout channel based on the chopper modulation technique. IEEE Prime Conference, 2007:113
[15]
Zhu Z, Wei W, Liu L, et al. A high precision CMOS voltage reference without resistors. Journal of Circuits, Systems, and Computers, 2012, 21(3):1250019 doi: 10.1142/S0218126612500193
[16]
AD7745/AD7746, 24-bit capacitance-to-digital converter with temperature sensor. www. analog. com
[17]
Chen Y, Jiao J, Dong L, et al. Micromachined bar-structure gyroscope with high q-factors for both driving and sensing mode at atmospheric pressure. IEEE 2nd Conference on Sensors Proceedings, Toronto, Canada, Oct, 2003, 1:461
[18]
Ko H, Cho D D. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sensors and Actuators A, 2010, 158:72 doi: 10.1016/j.sna.2009.12.017
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2207 Times PDF downloads: 20 Times Cited by: 0 Times

    History

    Received: 02 April 2013 Revised: 20 May 2013 Online: Published: 01 November 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tao Yin, Chong Zhang, Huanming Wu, Qisong Wu, Haigang Yang. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors[J]. Journal of Semiconductors, 2013, 34(11): 115005. doi: 10.1088/1674-4926/34/11/115005 T Yin, C Zhang, H M Wu, Q S Wu, H G Yang. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors[J]. J. Semicond., 2013, 34(11): 115005. doi: 10.1088/1674-4926/34/11/115005.Export: BibTex EndNote
      Citation:
      Tao Yin, Chong Zhang, Huanming Wu, Qisong Wu, Haigang Yang. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors[J]. Journal of Semiconductors, 2013, 34(11): 115005. doi: 10.1088/1674-4926/34/11/115005

      T Yin, C Zhang, H M Wu, Q S Wu, H G Yang. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors[J]. J. Semicond., 2013, 34(11): 115005. doi: 10.1088/1674-4926/34/11/115005.
      Export: BibTex EndNote

      A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors

      doi: 10.1088/1674-4926/34/11/115005
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61106025) and the CAS/SAFEA International Partnership Program for Creative Research Teams

      the CAS/SAFEA International Partnership Program for Creative Research Teams 

      the National Natural Science Foundation of China 61106025

      More Information
      • Corresponding author: Yang Haigang, yanghg@mail.ie.ac.cn
      • Received Date: 2013-04-02
      • Revised Date: 2013-05-20
      • Published Date: 2013-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return