SEMICONDUCTOR INTEGRATED CIRCUITS

A 6-7 GHz, 40 dB receiver RF front-end with 4.5 dB minimum noise figure in 0.13 μm CMOS for IR-UWB applications

Xi Qin, Yumei Huang and Zhiliang Hong

+ Author Affiliations

 Corresponding author: Hong Zhiliang, zlhong@fudan.edu.cn

PDF

Abstract: A wideband receiver RF front-end for IR-UWB applications is implemented in 0.13 μm CMOS technology. Thanks to the direct sub-sampling architecture, there is no mixing process. Both LNA and VGA work at RF frequencies. To optimize noise as well as linearity, a differential common-source LNA with capacitive cross-coupling is used, which only consumes current of 1.8 mA from a 1.2 V power supply. Following LNA, a two-stage current-steering VGA is adopted for gain tuning. To extend the overall bandwidth, a three-stage staggered peaking technique is used. Measurement results show that the proposed receiver front-end achieves a gain tuning range from 5 to 40 dB within 6-7 GHz, a minimum noise figure of 4.5 dB and a largest ⅡP3 of -11 dBm. The core receiver (without test buffer) consumes 14 mW from a 1.2 V power supply and occupies 0.58 mm2 area.

Key words: IR-UWBwideband receiverlow-noise amplifiervariable gain amplifiernoise figureⅡP3



[1]
Xia L, Huang Y, Hong Z. A fully integrated BPSK amplitude and spectrum tunable transmitter for IR-UWB system. Journal of Semiconductors, 2009, 30(1):015006 doi: 10.1088/1674-4926/30/1/015006
[2]
Lee F, Chandrakasan A. A 2.5 nJ/b 0.65 V 3-to-5 GHz subbanded UWB. IEEE ISSCC Dig Tech Papers, 2007:116 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4381454
[3]
Daly D, Mercier P, Bhardwaj M. A pulsed UWB receiver SoC for insect motion control. IEEE J Solid-State Circuits, 2010, 45(1):153 doi: 10.1109/JSSC.2009.2034433
[4]
Zou Z, Mendoza D, Wang P, et al. A low-power and flexible energy detection IR-UWB receiver for RFID and wireless sensor networks. IEEE Trans Circuits Syst I, 2011, 58(7):1470 doi: 10.1109/TCSI.2011.2142930
[5]
Kulkarni V, Muqsith M, Niitsu K, et al. A 750 Mb/s, 12 pJ/b, 6-to-10 GHz CMOS IR-UWB transmitter with embedded on-chip antenna. IEEE J Solid-State Circuits, 2009, 44(2):394 doi: 10.1109/JSSC.2008.2011034
[6]
Zhou L, Chen Z, Wang C, et al. A 2-Gb/s 130-nm CMOS RF-correlation-based IR-UWB transceiver front-end. IEEE Trans Microw Theory Tech, 2011, 59(4):1117 doi: 10.1109/TMTT.2011.2114190
[7]
Terada T, Yoshizumi S, Muqsith M, et al. A CMOS ultra-wideband impulse radio transceiver for 1-Mb/s data communications and ±2.5-cm range finding. IEEE J Solid-State Circuits, 2006, 41(4):891 doi: 10.1109/JSSC.2006.870760
[8]
Van Helleputte N, Verhelst M, Dehaene W, et al. A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precise ranging. IEEE J Solid-State Circuits, 2010, 45(1):69 doi: 10.1109/JSSC.2009.2031799
[9]
Shim Y, Yuwono S, Kim S, et al. A 520 pJ/pulse IR-UWB radar for short range object detection. IEEE Radio Frequency Integrated Circuits Symposium, 2011:1 http://dl.acm.org/citation.cfm?id=2721804
[10]
Newaskar P, Blazquez R, Chandrakasan A. A/D precision requirements for an ultra-wideband radio receiver. IEEE Workshop on Signal Processing Systems, 2002:270 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1049721
[11]
Chen W, Broderson R. A subsampling radio architecture for ultrawideband communications. IEEE Trans Signal Processing, 2007, 55(10):5018 doi: 10.1109/TSP.2007.896056
[12]
Shao K, Lu B, Xia L, et al. A high speed sampler for sub-sampling IR-UWB receiver. Journal of Semiconductors, 2010, 31(4):045004 doi: 10.1088/1674-4926/31/4/045004
[13]
Chen H, Lu B, Shao K, et al. A 4224 MHz low jitter phase-locked loop in 0.13-μm CMOS technology. Journal of Semiconductors, 2010, 31(1):015001 doi: 10.1088/1674-4926/31/1/015001
[14]
Shao K, Chen H, Pan Y, et al. A low jitter, low spur multiphase phase-locked loop for an IR-UWB receiver. Journal of Semiconductors, 2010, 31(8):085004 doi: 10.1088/1674-4926/31/8/085004
[15]
Shaeffer D, Lee T. A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5):745 http://ieeexplore.ieee.org/document/568846/?arnumber=568846&punumber%3D4
[16]
Blaakmeer S, Klumperink E, Leenaerts D, et al. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid-State Circuits, 2008, 43(6):1341 doi: 10.1109/JSSC.2008.922736
[17]
Wambacq P, Sansen W. Distortion analysis of analog integrated circuits. Netherlands:Kluwer Academic Publishers, 1998
[18]
Wei Z, Embabi S, Gyvez P, et al. Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design. IEEE ESSCIRC Dig Tech Papers, 2000:77 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=1471217&queryText%3D%28de+gyvez++j.+p.%3Cin%3Eau%29
[19]
Razavi B. Design of analog CMOS integrated circuits. NY:McGraw-Hill, 2001
[20]
Zhao Y, Dong Y, Gerrits F, et al. A short range, low data rate, 7.2 GHz-7.7 GHz FM-UWB receiver front-end. IEEE J Solid-State Circuits, 2009, 44(7):1872 doi: 10.1109/JSSC.2009.2020225
[21]
Zhou F, Gao T, Lan F, et al. A low noise CMOS RF front-end for UWB 6-9 GHz applications. Journal of Semiconductors, 2010, 31(11):115009 doi: 10.1088/1674-4926/31/11/115009
[22]
Xia L, Shao K, Huang Y, et al. 0.15-nJ/b 3-5-GHz IR-UWB system with spectrum tunable transmitter and merged-correlator noncoherent receiver. IEEE Trans Microw Theory Tech, 2011, 59(4):1147 http://adsabs.harvard.edu/abs/2011ITMTT..59.1147X
Fig. 1.  Architecture of the digital IR-UWB receiver.

Fig. 2.  LNA with a common-gate input. (a) Conventional common-gate. (b) Noise-canceling. (c) Capacitive cross-coupling. width is extended, as shown in the lower part of Fig. 1.

Fig. 3.  Noise figure lower bound of noise canceling LNA (solid line) and CCC LNA.

Fig. 4.  Common-gate capacitive cross-coupling (CCC) LNA.

Fig. 5.  Schematic of the VGA core cell.

Fig. 6.  Constant-$g_{\rm m}$ bias with start-up circuit.

Fig. 7.  Die photograph of the receiver front-end.

Fig. 8.  Measurement setup.

Fig. 9.  Output buffer and the off-chip bias-tee.

Fig. 10.  Measured $S_{11}$ and $S_{22}$.

Fig. 11.  Measured gain versus frequency with $V_{\rm C}$ $=$ 0 V ($\square)$, 0.2 V ($\vartriangle)$, 0.45 V (○), 0.55 V ($\times)$, 0.62 V ($\Diamond$), 0.7 V ($+$) and 1.2 V ($\triangledown )$.

Fig. 12.  Measured NF versus frequency with $V_{\rm C}$ $=$ 0 V ($\square )$, 0.2 V ($\vartriangle )$, 0.45 V (○ ), 0.55 V ($\times )$, 0.62 V ($\Diamond$), 0.7 V ($+$) and 1.2 V ($\triangledown)$.

Fig. 13.  Measured ⅡP$_{3}$ and gain versus $V_{\rm C}$.

Table 1.   Performance summary and comparison.

[1]
Xia L, Huang Y, Hong Z. A fully integrated BPSK amplitude and spectrum tunable transmitter for IR-UWB system. Journal of Semiconductors, 2009, 30(1):015006 doi: 10.1088/1674-4926/30/1/015006
[2]
Lee F, Chandrakasan A. A 2.5 nJ/b 0.65 V 3-to-5 GHz subbanded UWB. IEEE ISSCC Dig Tech Papers, 2007:116 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4381454
[3]
Daly D, Mercier P, Bhardwaj M. A pulsed UWB receiver SoC for insect motion control. IEEE J Solid-State Circuits, 2010, 45(1):153 doi: 10.1109/JSSC.2009.2034433
[4]
Zou Z, Mendoza D, Wang P, et al. A low-power and flexible energy detection IR-UWB receiver for RFID and wireless sensor networks. IEEE Trans Circuits Syst I, 2011, 58(7):1470 doi: 10.1109/TCSI.2011.2142930
[5]
Kulkarni V, Muqsith M, Niitsu K, et al. A 750 Mb/s, 12 pJ/b, 6-to-10 GHz CMOS IR-UWB transmitter with embedded on-chip antenna. IEEE J Solid-State Circuits, 2009, 44(2):394 doi: 10.1109/JSSC.2008.2011034
[6]
Zhou L, Chen Z, Wang C, et al. A 2-Gb/s 130-nm CMOS RF-correlation-based IR-UWB transceiver front-end. IEEE Trans Microw Theory Tech, 2011, 59(4):1117 doi: 10.1109/TMTT.2011.2114190
[7]
Terada T, Yoshizumi S, Muqsith M, et al. A CMOS ultra-wideband impulse radio transceiver for 1-Mb/s data communications and ±2.5-cm range finding. IEEE J Solid-State Circuits, 2006, 41(4):891 doi: 10.1109/JSSC.2006.870760
[8]
Van Helleputte N, Verhelst M, Dehaene W, et al. A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precise ranging. IEEE J Solid-State Circuits, 2010, 45(1):69 doi: 10.1109/JSSC.2009.2031799
[9]
Shim Y, Yuwono S, Kim S, et al. A 520 pJ/pulse IR-UWB radar for short range object detection. IEEE Radio Frequency Integrated Circuits Symposium, 2011:1 http://dl.acm.org/citation.cfm?id=2721804
[10]
Newaskar P, Blazquez R, Chandrakasan A. A/D precision requirements for an ultra-wideband radio receiver. IEEE Workshop on Signal Processing Systems, 2002:270 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1049721
[11]
Chen W, Broderson R. A subsampling radio architecture for ultrawideband communications. IEEE Trans Signal Processing, 2007, 55(10):5018 doi: 10.1109/TSP.2007.896056
[12]
Shao K, Lu B, Xia L, et al. A high speed sampler for sub-sampling IR-UWB receiver. Journal of Semiconductors, 2010, 31(4):045004 doi: 10.1088/1674-4926/31/4/045004
[13]
Chen H, Lu B, Shao K, et al. A 4224 MHz low jitter phase-locked loop in 0.13-μm CMOS technology. Journal of Semiconductors, 2010, 31(1):015001 doi: 10.1088/1674-4926/31/1/015001
[14]
Shao K, Chen H, Pan Y, et al. A low jitter, low spur multiphase phase-locked loop for an IR-UWB receiver. Journal of Semiconductors, 2010, 31(8):085004 doi: 10.1088/1674-4926/31/8/085004
[15]
Shaeffer D, Lee T. A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5):745 http://ieeexplore.ieee.org/document/568846/?arnumber=568846&punumber%3D4
[16]
Blaakmeer S, Klumperink E, Leenaerts D, et al. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid-State Circuits, 2008, 43(6):1341 doi: 10.1109/JSSC.2008.922736
[17]
Wambacq P, Sansen W. Distortion analysis of analog integrated circuits. Netherlands:Kluwer Academic Publishers, 1998
[18]
Wei Z, Embabi S, Gyvez P, et al. Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design. IEEE ESSCIRC Dig Tech Papers, 2000:77 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=1471217&queryText%3D%28de+gyvez++j.+p.%3Cin%3Eau%29
[19]
Razavi B. Design of analog CMOS integrated circuits. NY:McGraw-Hill, 2001
[20]
Zhao Y, Dong Y, Gerrits F, et al. A short range, low data rate, 7.2 GHz-7.7 GHz FM-UWB receiver front-end. IEEE J Solid-State Circuits, 2009, 44(7):1872 doi: 10.1109/JSSC.2009.2020225
[21]
Zhou F, Gao T, Lan F, et al. A low noise CMOS RF front-end for UWB 6-9 GHz applications. Journal of Semiconductors, 2010, 31(11):115009 doi: 10.1088/1674-4926/31/11/115009
[22]
Xia L, Shao K, Huang Y, et al. 0.15-nJ/b 3-5-GHz IR-UWB system with spectrum tunable transmitter and merged-correlator noncoherent receiver. IEEE Trans Microw Theory Tech, 2011, 59(4):1147 http://adsabs.harvard.edu/abs/2011ITMTT..59.1147X
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2508 Times PDF downloads: 18 Times Cited by: 0 Times

    History

    Received: 23 August 2012 Revised: 21 September 2012 Online: Published: 01 March 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xi Qin, Yumei Huang, Zhiliang Hong. A 6-7 GHz, 40 dB receiver RF front-end with 4.5 dB minimum noise figure in 0.13 μm CMOS for IR-UWB applications[J]. Journal of Semiconductors, 2013, 34(3): 035006. doi: 10.1088/1674-4926/34/3/035006 X Qin, Y M Huang, Z L Hong. A 6-7 GHz, 40 dB receiver RF front-end with 4.5 dB minimum noise figure in 0.13 μm CMOS for IR-UWB applications[J]. J. Semicond., 2013, 34(3): 035006. doi: 10.1088/1674-4926/34/3/035006.Export: BibTex EndNote
      Citation:
      Xi Qin, Yumei Huang, Zhiliang Hong. A 6-7 GHz, 40 dB receiver RF front-end with 4.5 dB minimum noise figure in 0.13 μm CMOS for IR-UWB applications[J]. Journal of Semiconductors, 2013, 34(3): 035006. doi: 10.1088/1674-4926/34/3/035006

      X Qin, Y M Huang, Z L Hong. A 6-7 GHz, 40 dB receiver RF front-end with 4.5 dB minimum noise figure in 0.13 μm CMOS for IR-UWB applications[J]. J. Semicond., 2013, 34(3): 035006. doi: 10.1088/1674-4926/34/3/035006.
      Export: BibTex EndNote

      A 6-7 GHz, 40 dB receiver RF front-end with 4.5 dB minimum noise figure in 0.13 μm CMOS for IR-UWB applications

      doi: 10.1088/1674-4926/34/3/035006
      Funds:

      Project supported by the National High Technology Research and Development Program of China (No. 2009AA01Z261) and the State Key Laboratory of Wireless Telecommunication, Southeast University

      the National High Technology Research and Development Program of China 2009AA01Z261

      the State Key Laboratory of Wireless Telecommunication, Southeast University 

      More Information
      • Corresponding author: Hong Zhiliang, zlhong@fudan.edu.cn
      • Received Date: 2012-08-23
      • Revised Date: 2012-09-21
      • Published Date: 2013-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return