SEMICONDUCTOR TECHNOLOGY

Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors

Xiaofeng Zhao, Dianzhong Wen, Cuicui Zhuang, Jingya Cao and Zhiqiang Wang

+ Author Affiliations

 Corresponding author: Wen Dianzhong, wendianzhong@126.com

PDF

Abstract: A magnetic field sensor based on nano-polysilicon thin films transistors (TFTs) with Hall probes is proposed. The magnetic field sensors are fabricated on < 100> orientation high resistivity (ρ>500 Ω·cm) silicon substrates by using CMOS technology, which adopt nano-polysilicon thin films with thicknesses of 90 nm and heterojunction interfaces between the nano-polysilicon thin films and the high resistivity silicon substrates as the sensing layers. The experimental results show that when VDS=5.0 V, the magnetic sensitivities of magnetic field sensors based on nano-polysilicon TFTs with length-width ratios of 160 μm/80 μm, 320 μm/80 μm and 480 μm/80 μm are 78 mV/T, 55 mV/T and 34 mV/T, respectively. Under the same conditions, the magnetic sensitivity of the obtained magnetic field sensor is significantly improved in comparison with a Hall magnetic field sensor adopting silicon as the sensing layers.

Key words: nano-polysilicon TFTmagnetic field sensorCMOS technologymagnetic sensitivityheterojunction interfaces



[1]
Gallagher R C, Corak W S. A metal-oxide-semiconductor (MOS) Hall element. Solid-State Electron, 1966, 9:571 doi: 10.1016/0038-1101(66)90172-9
[2]
Liu T, Zhu D Z. Relative sensitivity of sector split-drain magnetic field-effect transistor based on geometrical correction factor of sector Hall plate. Chinese Journal of Semiconductors, 2006, 27:2155 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4098379
[3]
Yao Y R, Zhu D Z. Sector split-drain magnetic MAGFET structure and model based on standard CMOS technology. Chinese Journal of Semiconductors, 2005, 26:2005 http://cn.bing.com/academic/profile?id=b378e9d6fd78617292cef3c24f07a528&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Bihan F L, Carvou E, Fortin B, et al. Realization of polycrystalline silicon magnetic sensors. Sensors and Actuators A, 2001, 88:133 doi: 10.1016/S0924-4247(00)00506-9
[5]
Carvou E, Bihan F L, Rogel R, et al. Magnetic sensors with polysilicon TFTs. Sensor Proceedings of IEEE, 2002, 2:804 doi: 10.1109/ICSENS.2002.1037210
[6]
Carvou E, Bihan F L, Bonnaud O. Hall effect magnetic sensors based on polysilicon TFTs. IEEE Sensors Journal, 2004, 4:597 doi: 10.1109/JSEN.2004.833497
[7]
Jacques E, Bihan F L, Crand S, et al. Differential amplifier using polysilicon TFTs processed at low temperature to be integrated with TFT Hall sensor. Conference on IEEE Industrial Electronics, 2006:3193 http://ieeexplore.ieee.org/document/4153450/
[8]
Yamaguchi Y, Hashimoto H, Kimura M, et al. Magnetic-field area sensor using poly-Si micro Hall devices. IEEE Electron Device Lett, 2010, 31:1260 doi: 10.1109/LED.2010.2068271
[9]
Kimura M, Yamaguchi Y, Hashimoto H, et al. Analysis of Hall voltage in micro poly-Si Hall cells. Electrochemical and Solid-State Lett, 2010, 13:J96
[10]
Chen X Y, Shen W Z, He Y L. Enhancement of electron mobility in nanocrystalline silicon/crystalline silicon heterostructures. J Appl Phys, 2005, 97:024305 doi: 10.1063/1.1832752
[11]
Chen X Y, Shen W Z, Chen H, et al. High electron mobility in well ordered and lattice-strained hydrogenated naocrystalline silicon. Nanotechnology, 2006, 17:595 doi: 10.1088/0957-4484/17/2/042
[12]
Chuai R Y, Wang J, Wu M L, et al. A tunneling piezoresistive model for polysilicon. Journal of Semiconductors, 2012, 33:092003 doi: 10.1088/1674-4926/33/9/092003
[13]
Zhao X F, Wen D Z. Fabrication and characteristics of a nano-polysilicon thin film pressure sensor. Journal of Semiconductors, 2008, 29:2038 http://www.cqvip.com/QK/94689X/201303/45044683.html
[14]
Zhao X F, Wen D Z. Fabrication and characteristics of the nc-Si/c-Si heterojunction MAGFET. Journal of Semiconductors, 2009, 30:114002 doi: 10.1088/1674-4926/30/11/114002
Fig. 1.  XRD spectra of the nano-polysilicon thin films deposited at 620 ℃ and thin films at different annealing temperatures. (a) 55 nm. (b) 90 nm.

Fig. 2.  Basic structure of the magnetic field sensor. (a) Top view. (b) Cross-section A-A$'$.

Fig. 3.  Basic structure of the magnetic field sensor based on nano-polysilicon TFT with Hall probes. (a) Top view. (b) Cross-section A-A$'$.

Fig. 4.  Operation principle of the magnetic field sensors based on nano-polysilicon TFTs. (a) $B$ $=$ 0 T. (b) $B$ $\neq$ 0 T.

Fig. 5.  Fabrication technology process of the magnetic field sensors based on nano-polysilicon TFTs with Hall probes.

Fig. 6.  Chip photographs of the magnetic field sensors based on nano-polysilicon TFT with Hall probes. (a) $L/W$ $=$ 480 $\mu$m/80 $\mu$m. (b) $L/W$ $=$ 320 $\mu$m/80 $\mu$m. (c) $L/W$ $=$ 160 $\mu$m/80 $\mu$m.

Fig. 7.  Magnetic charateristic curves of the magnetic field sensor with a channel length-width ratio of 480 $\mu$m/80 $\mu$m at different drain-source voltages. (a) Structure I. (b) Structure Ⅱ.

Fig. 8.  Magnetic characteristic curves of the magnetic field sensor based on the nano-polysilicon TFT. (a) $L/W$ $=$ 320 $\mu$m/80 $\mu$m. (b) $L/W$ $=$ 160 $\mu$m/80 $\mu$m.

Fig. 9.  Dependences of sensitivity on $V_{\rm DS}$ of the magnetic field sensor based on the nano-polysilicon TFT.

Fig. 10.  Compensating principle of inequipotential potentials of the magnetic field sensor based on nano-polysilicon TFT. (a) The gate is vacant. (b) A bias voltage is applied to the gate.

Fig. 11.  Magnetic characteristic curves of the magnetic field sensor based on nano-polysilicon TFT after compensating inequipotential potentials.

[1]
Gallagher R C, Corak W S. A metal-oxide-semiconductor (MOS) Hall element. Solid-State Electron, 1966, 9:571 doi: 10.1016/0038-1101(66)90172-9
[2]
Liu T, Zhu D Z. Relative sensitivity of sector split-drain magnetic field-effect transistor based on geometrical correction factor of sector Hall plate. Chinese Journal of Semiconductors, 2006, 27:2155 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4098379
[3]
Yao Y R, Zhu D Z. Sector split-drain magnetic MAGFET structure and model based on standard CMOS technology. Chinese Journal of Semiconductors, 2005, 26:2005 http://cn.bing.com/academic/profile?id=b378e9d6fd78617292cef3c24f07a528&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Bihan F L, Carvou E, Fortin B, et al. Realization of polycrystalline silicon magnetic sensors. Sensors and Actuators A, 2001, 88:133 doi: 10.1016/S0924-4247(00)00506-9
[5]
Carvou E, Bihan F L, Rogel R, et al. Magnetic sensors with polysilicon TFTs. Sensor Proceedings of IEEE, 2002, 2:804 doi: 10.1109/ICSENS.2002.1037210
[6]
Carvou E, Bihan F L, Bonnaud O. Hall effect magnetic sensors based on polysilicon TFTs. IEEE Sensors Journal, 2004, 4:597 doi: 10.1109/JSEN.2004.833497
[7]
Jacques E, Bihan F L, Crand S, et al. Differential amplifier using polysilicon TFTs processed at low temperature to be integrated with TFT Hall sensor. Conference on IEEE Industrial Electronics, 2006:3193 http://ieeexplore.ieee.org/document/4153450/
[8]
Yamaguchi Y, Hashimoto H, Kimura M, et al. Magnetic-field area sensor using poly-Si micro Hall devices. IEEE Electron Device Lett, 2010, 31:1260 doi: 10.1109/LED.2010.2068271
[9]
Kimura M, Yamaguchi Y, Hashimoto H, et al. Analysis of Hall voltage in micro poly-Si Hall cells. Electrochemical and Solid-State Lett, 2010, 13:J96
[10]
Chen X Y, Shen W Z, He Y L. Enhancement of electron mobility in nanocrystalline silicon/crystalline silicon heterostructures. J Appl Phys, 2005, 97:024305 doi: 10.1063/1.1832752
[11]
Chen X Y, Shen W Z, Chen H, et al. High electron mobility in well ordered and lattice-strained hydrogenated naocrystalline silicon. Nanotechnology, 2006, 17:595 doi: 10.1088/0957-4484/17/2/042
[12]
Chuai R Y, Wang J, Wu M L, et al. A tunneling piezoresistive model for polysilicon. Journal of Semiconductors, 2012, 33:092003 doi: 10.1088/1674-4926/33/9/092003
[13]
Zhao X F, Wen D Z. Fabrication and characteristics of a nano-polysilicon thin film pressure sensor. Journal of Semiconductors, 2008, 29:2038 http://www.cqvip.com/QK/94689X/201303/45044683.html
[14]
Zhao X F, Wen D Z. Fabrication and characteristics of the nc-Si/c-Si heterojunction MAGFET. Journal of Semiconductors, 2009, 30:114002 doi: 10.1088/1674-4926/30/11/114002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2345 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 24 August 2012 Revised: 08 October 2012 Online: Published: 01 March 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaofeng Zhao, Dianzhong Wen, Cuicui Zhuang, Jingya Cao, Zhiqiang Wang. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors[J]. Journal of Semiconductors, 2013, 34(3): 036001. doi: 10.1088/1674-4926/34/3/036001 X F Zhao, D Z Wen, C C Zhuang, J Y Cao, Z Q Wang. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors[J]. J. Semicond., 2013, 34(3): 036001. doi: 10.1088/1674-4926/34/3/036001.Export: BibTex EndNote
      Citation:
      Xiaofeng Zhao, Dianzhong Wen, Cuicui Zhuang, Jingya Cao, Zhiqiang Wang. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors[J]. Journal of Semiconductors, 2013, 34(3): 036001. doi: 10.1088/1674-4926/34/3/036001

      X F Zhao, D Z Wen, C C Zhuang, J Y Cao, Z Q Wang. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors[J]. J. Semicond., 2013, 34(3): 036001. doi: 10.1088/1674-4926/34/3/036001.
      Export: BibTex EndNote

      Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors

      doi: 10.1088/1674-4926/34/3/036001
      Funds:

      the Excellent Youth Foundation of Heilongjiang University, China JCL201007

      the National Natural Science Foundation of China 61006057

      the Foundation for University Young Key Teacher of Heilongjiang Province, China 1251G046

      Project supported by the National Natural Science Foundation of China (No. 61006057), the Foundation for University Young Key Teacher of Heilongjiang Province, China (No. 1251G046), and the Excellent Youth Foundation of Heilongjiang University, China (No. JCL201007)

      More Information
      • Corresponding author: Wen Dianzhong, wendianzhong@126.com
      • Received Date: 2012-08-24
      • Revised Date: 2012-10-08
      • Published Date: 2013-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return