SEMICONDUCTOR MATERIALS

Solar light assisted photocatalysis of water using a zinc oxide semiconductor

S.S. Shinde, C.H. Bhosale and K.Y. Rajpure

+ Author Affiliations

 Corresponding author: K. Y. Rajpure, Email:rajpure@yahoo.com

PDF

Abstract: The photocatalytic decomposition of an eco-persistent AO7 dye with sunlight in an oxygenated aqueous suspension has been studied under a nano-crystalline hexagonal ZnO photocatalyst. The effect of substrate temperature on the structural, morphological and photoactive properties has been investigated. The degradation of the AO7 dye is achieved using a photoelectrochemical reactor module equipped with ZnO synthesized electrodes. Kinetic parameters have been investigated in terms of a first order rate equation. The rate constant for this heterogeneous photocatalysis was evaluated as a function of the initial concentration of original species. A substantial reduction in AO7 dye is achieved as analyzed from COD and TOC studies. The mechanism for the degradation could be explained on the basis of the Langmuir-Hinshelwood mechanism.

Key words: zinc oxidechemical kineticsphotoelectrocatalysisorganic speciessunlight



[1]
Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater, 2007, 141:581 doi: 10.1016/j.jhazmat.2006.07.035
[2]
Kusuvuran E, Samil A, Atanur O M, et al. Photocatalytic degradation kinetics of di-and tri-substituted phenolic compounds in aqueous solution by TiO2/UV. Appl Catal B:Environ, 2005, 58:211 doi: 10.1016/j.apcatb.2004.11.023
[3]
Akyol A, Yatmaz H C, Bayramoglu M. Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions. Appl Catal B:Environ, 2004, 54:19 doi: 10.1016/j.apcatb.2004.05.021
[4]
Dindar B, Icli S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A:Chem, 2001, 140:263 doi: 10.1016/S1010-6030(01)00414-2
[5]
Poulios I, Aetopoulou I. Photocatalytic degradation of the textile dye reactive orange 16 in the presence of TiO2 suspensions. Environ Technol, 1999, 20:479 doi: 10.1080/09593332008616843
[6]
Pall B, Sharan M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater Chem Phys, 2002, 76:82 doi: 10.1016/S0254-0584(01)00514-4
[7]
Navarro S, Fenoll J, Vela N, et al. Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J Haz Mater, 2009, 172:1303 doi: 10.1016/j.jhazmat.2009.07.137
[8]
Devipriya S, Yesodharan S. Photocatalytic degradation of pesticide contaminants in water. Solar Energy Mater Solar Cells, 2005, 86:309 doi: 10.1016/j.solmat.2004.07.013
[9]
Aal A A, Mahmoud S A, Aboul-Gheit A K. Nanocrystalline ZnO thin film for photocatalytic purification of water. Mater Sci Eng C, 2009, 29:831 doi: 10.1016/j.msec.2008.07.035
[10]
Wang Y, Li X, Wang N, et al. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Separation Purification Technol, 2008, 62:727 doi: 10.1016/j.seppur.2008.03.035
[11]
Shinde S S, Shinde P S, Oh Y W, et al. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Appl Surf Sci, 2012, 258:9969 doi: 10.1016/j.apsusc.2012.06.058
[12]
Shinde S S, Bansode R A, Bhosale C H, et al. Physical properties of hematite α-Fe2O3 thin films:application to photoelectrochemical solar cells. Journal of Semiconductors, 2011, 32:013001 doi: 10.1088/1674-4926/32/1/013001
[13]
Babar A R, Shinde S S, Moholkar A V, et al. Physical properties of sprayed antimony doped tin oxide thin films:the role of thickness. Journal of Semiconductors, 2011, 32:053001 doi: 10.1088/1674-4926/32/5/053001
[14]
Shinde S S, Bhosale C H, Rajpure K Y. Hydroxyl radical's role in the remediation of wastewater. J Photochem Photobiol B:Biol, 2012, 116:66 doi: 10.1016/j.jphotobiol.2012.08.003
[15]
Shinde S S, Bhosale C H, Rajpure K Y. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. J Photochem Photobiol B:Biol, 2012, 113:70 doi: 10.1016/j.jphotobiol.2012.05.008
[16]
Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem Rev, 1993, 93:341 doi: 10.1021/cr00017a016
Fig. 1.  X-ray diffraction patterns of zinc oxide thin films deposited for various substrate temperatures

Fig. 2.  Typical scanning electron micrograph of a ZnO thin film deposited at 400 ℃

Fig. 3.  Plot of extinction spectra w. r. t. illumination time

Fig. 4.  Plot of kinetics of degradation of AO7 dye at 485 nm

Fig. 5.  Variation of COD and TOC with reaction time

[1]
Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater, 2007, 141:581 doi: 10.1016/j.jhazmat.2006.07.035
[2]
Kusuvuran E, Samil A, Atanur O M, et al. Photocatalytic degradation kinetics of di-and tri-substituted phenolic compounds in aqueous solution by TiO2/UV. Appl Catal B:Environ, 2005, 58:211 doi: 10.1016/j.apcatb.2004.11.023
[3]
Akyol A, Yatmaz H C, Bayramoglu M. Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions. Appl Catal B:Environ, 2004, 54:19 doi: 10.1016/j.apcatb.2004.05.021
[4]
Dindar B, Icli S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A:Chem, 2001, 140:263 doi: 10.1016/S1010-6030(01)00414-2
[5]
Poulios I, Aetopoulou I. Photocatalytic degradation of the textile dye reactive orange 16 in the presence of TiO2 suspensions. Environ Technol, 1999, 20:479 doi: 10.1080/09593332008616843
[6]
Pall B, Sharan M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater Chem Phys, 2002, 76:82 doi: 10.1016/S0254-0584(01)00514-4
[7]
Navarro S, Fenoll J, Vela N, et al. Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J Haz Mater, 2009, 172:1303 doi: 10.1016/j.jhazmat.2009.07.137
[8]
Devipriya S, Yesodharan S. Photocatalytic degradation of pesticide contaminants in water. Solar Energy Mater Solar Cells, 2005, 86:309 doi: 10.1016/j.solmat.2004.07.013
[9]
Aal A A, Mahmoud S A, Aboul-Gheit A K. Nanocrystalline ZnO thin film for photocatalytic purification of water. Mater Sci Eng C, 2009, 29:831 doi: 10.1016/j.msec.2008.07.035
[10]
Wang Y, Li X, Wang N, et al. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Separation Purification Technol, 2008, 62:727 doi: 10.1016/j.seppur.2008.03.035
[11]
Shinde S S, Shinde P S, Oh Y W, et al. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Appl Surf Sci, 2012, 258:9969 doi: 10.1016/j.apsusc.2012.06.058
[12]
Shinde S S, Bansode R A, Bhosale C H, et al. Physical properties of hematite α-Fe2O3 thin films:application to photoelectrochemical solar cells. Journal of Semiconductors, 2011, 32:013001 doi: 10.1088/1674-4926/32/1/013001
[13]
Babar A R, Shinde S S, Moholkar A V, et al. Physical properties of sprayed antimony doped tin oxide thin films:the role of thickness. Journal of Semiconductors, 2011, 32:053001 doi: 10.1088/1674-4926/32/5/053001
[14]
Shinde S S, Bhosale C H, Rajpure K Y. Hydroxyl radical's role in the remediation of wastewater. J Photochem Photobiol B:Biol, 2012, 116:66 doi: 10.1016/j.jphotobiol.2012.08.003
[15]
Shinde S S, Bhosale C H, Rajpure K Y. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. J Photochem Photobiol B:Biol, 2012, 113:70 doi: 10.1016/j.jphotobiol.2012.05.008
[16]
Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem Rev, 1993, 93:341 doi: 10.1021/cr00017a016
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2221 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 18 September 2012 Revised: 13 October 2012 Online: Published: 01 April 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      S.S. Shinde, C.H. Bhosale, K.Y. Rajpure. Solar light assisted photocatalysis of water using a zinc oxide semiconductor[J]. Journal of Semiconductors, 2013, 34(4): 043002. doi: 10.1088/1674-4926/34/4/043002 S.S. Shinde, C.H. Bhosale, K.Y. Rajpure. Solar light assisted photocatalysis of water using a zinc oxide semiconductor[J]. J. Semicond., 2013, 34(4): 043002. doi: 10.1088/1674-4926/34/4/043002.Export: BibTex EndNote
      Citation:
      S.S. Shinde, C.H. Bhosale, K.Y. Rajpure. Solar light assisted photocatalysis of water using a zinc oxide semiconductor[J]. Journal of Semiconductors, 2013, 34(4): 043002. doi: 10.1088/1674-4926/34/4/043002

      S.S. Shinde, C.H. Bhosale, K.Y. Rajpure. Solar light assisted photocatalysis of water using a zinc oxide semiconductor[J]. J. Semicond., 2013, 34(4): 043002. doi: 10.1088/1674-4926/34/4/043002.
      Export: BibTex EndNote

      Solar light assisted photocatalysis of water using a zinc oxide semiconductor

      doi: 10.1088/1674-4926/34/4/043002
      Funds:

      Project supported by the Defense Research and Development Organization (DRDO), New Delhi, India (No. ERIP/ER/0503504/M/01/1007)

      the Defense Research and Development Organization (DRDO), New Delhi, India ERIP/ER/0503504/M/01/1007

      More Information
      • Corresponding author: K. Y. Rajpure, Email:rajpure@yahoo.com
      • Received Date: 2012-09-18
      • Revised Date: 2012-10-13
      • Published Date: 2013-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return