SEMICONDUCTOR DEVICES

Multi-LED package design, fabrication and thermal analysis

R. H. Poelma1, , S. Tarashioon1, H. W. van Zeijl1, S. Goldbach2, J. L. J. Zijl3 and G. Q. Zhang1, 2

+ Author Affiliations

 Corresponding author: R. H. Poelma, Email:R.H.Poelma@tudelft.nl

PDF

Abstract: An ultra-thin multi-LED package is designed, manufactured and its thermal performance is characterized. The objective of this study is to develop an efficient thermal modelling approach for this system which can be used for optimization of the thermal-performance of future ultra-thin designs. A high-resolution thermal imaging camera and thermocouples were used to measure the temperature distribution of the multi-LED package and the LED-die temperature for different operating powers. Finally, we compare the thermal measurements with the finite element simulation results. It is concluded that the modelling approach can assist in the thermal optimization of future multi-LED package designs.

Key words: LEDpackagingoptics moldinghigh-resolution thermal imagingthermal modeling and measurements



[1]
Lee S J, Kim K H, Ju J W, et al. High-brightness GaN-based light-emitting diodes on Si using wafer bonding technology. Appl Phys Express, 2011, 4(6):066501 doi: 10.1143/APEX.4.066501
[2]
Agrawal V, Beccard R, Black I, et al. Solid state lighting LED manufacturing roundtable summary. U.S. Department of Energy, 2011:1
[3]
Cheng T, Luo X, Huang S, et al. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution. International Journal of Thermal Sciences, 2010, 49(1):196 doi: 10.1016/j.ijthermalsci.2009.07.010
[4]
Efremov A A, Bochkoreva N I, Gorbunov R I, et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 2006, 40(5):605 doi: 10.1134/S1063782606050162
[5]
Wang J, Smith B, Xie X, et al. High-efficiency diode lasers at high output power. Appl Phys Lett, 1999, 74(11):1525 doi: 10.1063/1.123604
[6]
Sahray D, Shmueli H, Ziskind G, et al. Study and optimization of horizontal-base pin-fin heat sinks in natural convection and radiation. Journal of Heat Transfer, 2010, 132(1):012503 doi: 10.1115/1.3156791
[7]
Mills A F. Basic heat and mass transfer. Prentice Hall, 1999
[8]
Öhsner A, Tane M, Nakajima H. Prediction of the thermal properties of lotus-type and quasi-isotropic porous metals:numerical and analytical methods. Mater Lett, 2006, 60(21/22):2690
Fig. 1.  (a) Schematic illustration of the multi-LED package placed on the fin heat sink showing the locations of the thermocouples T1, T2 and T3. (b) Package after LED placement and silicone molding and before interconnect patterning. (c) Package after interconnect patterning. (d) Final assembly on the passively cooled copper heat sink. (e) Illumination at low power.

Fig. 2.  Process flowchart of the multi-LED package.

Fig. 3.  (a) Measurement setup. (b) Thermal image of the multi-LED package at an input power of 35 W. The color indicates the surface temperature.

Fig. 4.  Side-view of the LED package and the corresponding geometric parameters.

Fig. 5.  Heat transfer coefficient plotted against different temperatures of the surface and for several orientations. The ambient temperature is 300 K.

Fig. 6.  Temperature distribution of a 4 $\times$ 4 LED array (only a quarter shown) at 40 W operating power. The package is horizontally orientated, worst case.

Fig. 7.  Temperature profile measured by the IR camera compared to the numerical simulation. The profile is measured along the cross-section T1–T3 for the horizontal orientation of the heat sink at an operating power of 35 W.

Fig. 8.  Temperature at the measurement locations T1–T3 for increasing operating power compared to simulation.

Table 1.   User requirements for an LED-spot for retail and hospitality applications.

Table 2.   LED properties.

Table 3.   The values of constant $C$ and exponent $n$ for different surface orientations.

[1]
Lee S J, Kim K H, Ju J W, et al. High-brightness GaN-based light-emitting diodes on Si using wafer bonding technology. Appl Phys Express, 2011, 4(6):066501 doi: 10.1143/APEX.4.066501
[2]
Agrawal V, Beccard R, Black I, et al. Solid state lighting LED manufacturing roundtable summary. U.S. Department of Energy, 2011:1
[3]
Cheng T, Luo X, Huang S, et al. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution. International Journal of Thermal Sciences, 2010, 49(1):196 doi: 10.1016/j.ijthermalsci.2009.07.010
[4]
Efremov A A, Bochkoreva N I, Gorbunov R I, et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 2006, 40(5):605 doi: 10.1134/S1063782606050162
[5]
Wang J, Smith B, Xie X, et al. High-efficiency diode lasers at high output power. Appl Phys Lett, 1999, 74(11):1525 doi: 10.1063/1.123604
[6]
Sahray D, Shmueli H, Ziskind G, et al. Study and optimization of horizontal-base pin-fin heat sinks in natural convection and radiation. Journal of Heat Transfer, 2010, 132(1):012503 doi: 10.1115/1.3156791
[7]
Mills A F. Basic heat and mass transfer. Prentice Hall, 1999
[8]
Öhsner A, Tane M, Nakajima H. Prediction of the thermal properties of lotus-type and quasi-isotropic porous metals:numerical and analytical methods. Mater Lett, 2006, 60(21/22):2690
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2666 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 27 November 2012 Revised: 14 November 2012 Online: Published: 01 May 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      R. H. Poelma, S. Tarashioon, H. W. van Zeijl, S. Goldbach, J. L. J. Zijl, G. Q. Zhang. Multi-LED package design, fabrication and thermal analysis[J]. Journal of Semiconductors, 2013, 34(5): 054002. doi: 10.1088/1674-4926/34/5/054002 R. H. Poelma, S. Tarashioon, H. W. van Zeijl, S. Goldbach, J. L. J. Zijl, G. Q. Zhang. Multi-LED package design, fabrication and thermal analysis[J]. J. Semicond., 2013, 34(5): 054002. doi: 10.1088/1674-4926/34/5/054002.Export: BibTex EndNote
      Citation:
      R. H. Poelma, S. Tarashioon, H. W. van Zeijl, S. Goldbach, J. L. J. Zijl, G. Q. Zhang. Multi-LED package design, fabrication and thermal analysis[J]. Journal of Semiconductors, 2013, 34(5): 054002. doi: 10.1088/1674-4926/34/5/054002

      R. H. Poelma, S. Tarashioon, H. W. van Zeijl, S. Goldbach, J. L. J. Zijl, G. Q. Zhang. Multi-LED package design, fabrication and thermal analysis[J]. J. Semicond., 2013, 34(5): 054002. doi: 10.1088/1674-4926/34/5/054002.
      Export: BibTex EndNote

      Multi-LED package design, fabrication and thermal analysis

      doi: 10.1088/1674-4926/34/5/054002
      More Information
      • Corresponding author: R. H. Poelma, Email:R.H.Poelma@tudelft.nl
      • Received Date: 2012-11-27
      • Revised Date: 2012-11-14
      • Published Date: 2013-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return