SEMICONDUCTOR PHYSICS

The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells

Xiaosheng Qu, Sisi Zhang, Hongyin Bao and Liling Xiong

+ Author Affiliations

 Corresponding author: Zhang Sisi, Email:fbczs@126.com

PDF

Abstract: A metamorphic GaInP/GaAs/GaInAs/Ge multi-junction solar cell with InAs quantum dots is investigated, and the analytical expression of the energy conversion efficiency on the multi-junction tandem solar cell is derived using the detailed balance principle and the Kronig-Penney model. The influences of interdot distance, quantum-dot size and the intermediate band location on the energy conversion efficiency are studied. This shows that the maximum efficiency, as a function of quantum-dot size and distance, is about 60.15% under the maximum concentration for only one InAs/GaAs subcell, and is even up to 39.69% for the overall cell. In addition, other efficiency factors such as current mismatch, the formation of a quasicontinuum conduction band and concentrated light are examined.

Key words: multi-junction solar cellKronig-Penney modelquantum dotintermediate bandhigh efficiency



[1]
Linares P G, Martí A, Antolín E, et al. Ⅲ-Ⅴ compound semiconductor screening for implementing quantum dot intermediate band solar cells. J Appl Phys, 2011, 109(1):014313 doi: 10.1063/1.3527912
[2]
Martí A, López N, Antolín E, et al. Novel semiconductor solar cell structures:the quantum dot intermediateband solar cell. Thin Solid Films, 2006, 511/512:638 http://cat.inist.fr/?aModele=afficheN&cpsidt=17880295
[3]
Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett, 1997, 78(26):5014 doi: 10.1103/PhysRevLett.78.5014
[4]
Mehdipour A, Ogawa M, Souma S. Tight binding modeling of intermediate band solar cells based on InAs/GaAs quantum dot arrays. International Meeting for Future of Electron Devices, 2011:36 http://ieeexplore.ieee.org/document/5944832/authors
[5]
Ojajärvi J, Räsänen E, Sadewasser S, et al. Tetrahedral chalcopyrite quantum dots for solar-cell applications. Appl Phys Lett, 2011, 99(11):111907 doi: 10.1063/1.3640225
[6]
Guter W, Schone J, Philipps S P, et al. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl Phys Lett, 2009, 94(22):223504 doi: 10.1063/1.3148341
[7]
Roosbroeck W, Shockley W. Photon-radiative recombination of electrons and holes in germanium. Phys Rev Lett, 1954, 94:1558 doi: 10.1103/PhysRev.94.1558
[8]
Lazarenkova O L, Balandin A A. Miniband formation in a quantum dot crystal. J Appl Phys, 2001, 89(10):5509 doi: 10.1063/1.1366662
[9]
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys. J Appl Phys, 2001, 89(11):5815 doi: 10.1063/1.1368156
[10]
Shao Q, Balandin A A, Fedoseyev A I, et al. Intermediate-band solar cells based on quantum dot supracrystals. Appl Phys Lett, 2007, 91(16):163503 doi: 10.1063/1.2799172
[11]
Van Vechten J A, Bergstresser T K. Electronic structures of semiconductor alloys. Phys Rev B, 1970, 1:3351 doi: 10.1103/PhysRevB.1.3351
[12]
Luque A, Martí A, López N, et al. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. App Phys Lett, 2005, 87(8):083505 doi: 10.1063/1.2034090
[13]
Martí A, Cuadra L, Luque A. Partial filling of a quantum dot intermediate band for solar cells. IEEE Trans Electron Devices, 2001:2394 http://ieeexplore.ieee.org/document/954482/
[14]
Cuadra L, Martí L, Luque A. Quantum dot intermediate band solar cell. Conference Record of the 28th IEEE Photovoltaic Specialists Conference, 2000:940 http://ieeexplore.ieee.org/document/916039/authors
[15]
Cui M, Chen N F, Yang X L, et al. Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell. Journal of Semiconductors, 2012, 33(2):024006 doi: 10.1088/1674-4926/33/2/024006
Fig. 1.  Energy diagram of the quantum-dot intermediate-band solar cell showing the minibands formed in this structure and a slight CB degradation to form a quasicontinuum CB.

Fig. 2.  Design structure with multi-stacks of InAs quantum dots embedded by conventional GaAs spacers.

Fig. 3.  The calculated miniband dispersion in the potential well region for different interdot distances and quantum-dot sizes. (a) Multi-intermediate band generation. (b) Only one band with width and quasicontinuum CB formation.

Fig. 4.  (a) The efficiency of only the InAs/GaAs QDIB subcell under maximum concentrated sunlight. (b) The dependences of the size of the quantum dot and concentrated light on current density.

Fig. 5.  The efficiency of the overall cell under different concentrated sunlight dependences of interdot distance and the size of the quantum dot.

Table 1.   Computational open circuit voltage ($V_{\rm oc})$ short circuit current density ($J_{\rm sc}$) and fill factor (FF) for the overall cell at 1140 suns.

[1]
Linares P G, Martí A, Antolín E, et al. Ⅲ-Ⅴ compound semiconductor screening for implementing quantum dot intermediate band solar cells. J Appl Phys, 2011, 109(1):014313 doi: 10.1063/1.3527912
[2]
Martí A, López N, Antolín E, et al. Novel semiconductor solar cell structures:the quantum dot intermediateband solar cell. Thin Solid Films, 2006, 511/512:638 http://cat.inist.fr/?aModele=afficheN&cpsidt=17880295
[3]
Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett, 1997, 78(26):5014 doi: 10.1103/PhysRevLett.78.5014
[4]
Mehdipour A, Ogawa M, Souma S. Tight binding modeling of intermediate band solar cells based on InAs/GaAs quantum dot arrays. International Meeting for Future of Electron Devices, 2011:36 http://ieeexplore.ieee.org/document/5944832/authors
[5]
Ojajärvi J, Räsänen E, Sadewasser S, et al. Tetrahedral chalcopyrite quantum dots for solar-cell applications. Appl Phys Lett, 2011, 99(11):111907 doi: 10.1063/1.3640225
[6]
Guter W, Schone J, Philipps S P, et al. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl Phys Lett, 2009, 94(22):223504 doi: 10.1063/1.3148341
[7]
Roosbroeck W, Shockley W. Photon-radiative recombination of electrons and holes in germanium. Phys Rev Lett, 1954, 94:1558 doi: 10.1103/PhysRev.94.1558
[8]
Lazarenkova O L, Balandin A A. Miniband formation in a quantum dot crystal. J Appl Phys, 2001, 89(10):5509 doi: 10.1063/1.1366662
[9]
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys. J Appl Phys, 2001, 89(11):5815 doi: 10.1063/1.1368156
[10]
Shao Q, Balandin A A, Fedoseyev A I, et al. Intermediate-band solar cells based on quantum dot supracrystals. Appl Phys Lett, 2007, 91(16):163503 doi: 10.1063/1.2799172
[11]
Van Vechten J A, Bergstresser T K. Electronic structures of semiconductor alloys. Phys Rev B, 1970, 1:3351 doi: 10.1103/PhysRevB.1.3351
[12]
Luque A, Martí A, López N, et al. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. App Phys Lett, 2005, 87(8):083505 doi: 10.1063/1.2034090
[13]
Martí A, Cuadra L, Luque A. Partial filling of a quantum dot intermediate band for solar cells. IEEE Trans Electron Devices, 2001:2394 http://ieeexplore.ieee.org/document/954482/
[14]
Cuadra L, Martí L, Luque A. Quantum dot intermediate band solar cell. Conference Record of the 28th IEEE Photovoltaic Specialists Conference, 2000:940 http://ieeexplore.ieee.org/document/916039/authors
[15]
Cui M, Chen N F, Yang X L, et al. Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell. Journal of Semiconductors, 2012, 33(2):024006 doi: 10.1088/1674-4926/33/2/024006
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2649 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 08 October 2012 Revised: 22 January 2013 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaosheng Qu, Sisi Zhang, Hongyin Bao, Liling Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells[J]. Journal of Semiconductors, 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003 X S Qu, S S Zhang, H Y Bao, L L Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells[J]. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003.Export: BibTex EndNote
      Citation:
      Xiaosheng Qu, Sisi Zhang, Hongyin Bao, Liling Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells[J]. Journal of Semiconductors, 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003

      X S Qu, S S Zhang, H Y Bao, L L Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells[J]. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003.
      Export: BibTex EndNote

      The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells

      doi: 10.1088/1674-4926/34/6/062003
      More Information
      • Corresponding author: Zhang Sisi, Email:fbczs@126.com
      • Received Date: 2012-10-08
      • Revised Date: 2013-01-22
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return