SEMICONDUCTOR DEVICES

Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou and Tailiang Guo

+ Author Affiliations

 Corresponding author: Zhou Xiongtu, xtzhou@fzu.edu.cn; Guo Tailiang, gtl_fzu@yahoo.com.cn

PDF

Abstract: This paper describes the fabrication of backlight units (BLUs) for a liquid crystal display (LCD) based on a novel planar-gate electron source with patterned carbon nanotubes (CNTs) formed by electrophoretic deposition. The electric field distributions and electron trajectories of this triode structure are simulated according to Ansys software. The device structure is optimized by supporting numerical simulation. The field emission results show that the emission current depends strongly on the cathode-gate gap and the gate voltage. Direct observation of the luminous images on a phosphor screen reveals that the electron beams undergo a noticeable expansion along the lateral direction with increasing gate voltage, which is in good agreement with the simulation results. The luminous efficiency and luminance of the fabricated device reaches 49.1 lm/W and 5500 cd/m2, respectively. All results indicate that the novel planar-gate electron source with patterned CNTs may lead to practical applications for an electron source based on a flat lamp for BLUs in LCD.

Key words: planar-gate triodepatterned CNTssimulationfield emissionBLUs



[1]
De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science, 1995, 270(5239):1179 doi: 10.1126/science.270.5239.1179
[2]
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354:56 doi: 10.1038/354056a0
[3]
Xiao X J, Ye Y, Guo T L, et al. Improved filed emission properties of carbon nanotubes by nickel electroplating and corrosion. Journal of Semiconductors, 2012, 33(5):053004 doi: 10.1088/1674-4926/33/5/053004
[4]
Zhang Y A, Lin J Y, Guo T L, et al. Stable field emission from planar-gate electron source with CNTs by electrophoretic deposition. Solid-State Electron, 2012, 67(1):6 doi: 10.1016/j.sse.2011.08.005
[5]
Zheng L W, Hu L Q, Guo T L, et al. Improved of the field emission properties carbon nanotubes by CNT/Fe3O4 composite electrophoretic deposition. Journal of Semiconductors, 2012, 32(12):0126001 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=11060101&flag=1
[6]
Choi W B, Chung D S, Kang J H, et al. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett, 1999, 75(20):3129 doi: 10.1063/1.125253
[7]
Guo P S, Chen T, Chen Y W, et al. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters. Solid-State Electron, 2008, 52(6):877 doi: 10.1016/j.sse.2008.01.023
[8]
Lee S H, Ma C M, Teng C C, et al. The effect of a magnetic field on the graphitization of carbon nanotubes and its application in field emission. Diamond Relat Mater, 2012, 25:111 doi: 10.1016/j.diamond.2012.02.019
[9]
Choi H Y, Chang W S, Kim H S, et al. Acquisition of X-ray images by using a CNT cold emitter. Phys Lett A, 2006, 357:36 doi: 10.1016/j.physleta.2006.04.015
[10]
Silan J L, Niemann D L, Ribaya B P, et al. Investigation of carbon nanotube field emitter geometry for increased current density. Solid-State Electron, 2010, 54(12):1543 doi: 10.1016/j.sse.2010.07.004
[11]
Jung Y J, Son G H, Park J H, et al. Fabrication and properties of under-gated triode with CNT emitter for flat lamp. Diamond Relat Mater, 2005, 14(11/12):2112 http://www.sciencedirect.com/science/article/pii/S0925963505002761
[12]
Lee J, Jung Y, Song J Y, et al. High-performance field emission from a carbon nanotube carpet. Carbon, 2012, 50(12):3889 http://www.sciencedirect.com/science/article/pii/S0008622312003478
[13]
Jang E S, Goak J C, Lee H S, et al. Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters. Appl Surf Sci, 2010, 256(22):6838 doi: 10.1016/j.apsusc.2010.04.098
[14]
Choi Y C, Lee J W, Lee S K, et al. The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit. Nanotechnology, 2008, 19(23):235306 doi: 10.1088/0957-4484/19/23/235306
[15]
Song M S, Park Y K, Yun J J, et al. Distributed circuit model for cold cathode fluorescent lamps in back-light unit of liquid crystal display. Display, 2010, 31(2):104 doi: 10.1016/j.displa.2010.02.006
[16]
Huang W, Li J M, Yang L M, et al. Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display. Optics & Laser Technology, 2011, 43(1):214 http://www.sciencedirect.com/science/article/pii/S0030399210001611?via%3Dihub
[17]
Kim Y C, Kang H S, Cho E, et al. Building a backlight unit with lateral gate structure based on carbon nanotube field emitters. Nanotechnology, 2009, 20(9):095204 doi: 10.1088/0957-4484/20/9/095204
[18]
Wang F H, Lin T C, Tzeng S D, et al. Field emission properties of carbon nanotube cathodes produced using composite plating. Appl Surf Sci, 2010, 256(24):7600 doi: 10.1016/j.apsusc.2010.06.010
[19]
Park J H, Son G H, Moon J S, et al. Screen printed carbon nanotube field emitter array for lighting source application. J Vac Sci Technol B, 2005, 23(2):749 doi: 10.1116/1.1851535
[20]
Cao Y B, Lei W, Liu M, et al. Ion bombardment in a normal-gate FED. Appl Surf Sci, 2005, 243(1-4):19 doi: 10.1016/j.apsusc.2004.06.097
[21]
Choi Y S, Kang J H, Kim H Y, et al. A simple structure and fabrication of carbon-nanotube field emission display. Appl Surf Sci, 2004, 221(1-4):370 doi: 10.1016/S0169-4332(03)00935-8
[22]
Zhang Y A, Wu C X, Guo T L, et al. An improved planar-gate triode with CNTs field emitters by electrophoretic deposition. Appl Surf Sci, 2011, 257(8):3259 doi: 10.1016/j.apsusc.2010.10.153
[23]
Lu W H, Song H, Jin Y X, et al. Electrophoresis deposition and field emission characteristics of planar-gate-type electron source with carbon nanotubes. Physica B, 2008, 403(10/11):1796 http://www.sciencedirect.com/science/article/pii/S0921452607008897
[24]
Su S H, Chiang W T, Lin C C, et al. Multi-wall carbon nanotubes:purification, morphology and field emission performance. Physica E, 2008, 40(7):2322 doi: 10.1016/j.physe.2007.09.087
[25]
Fowler R H, Nordheim L W. Electron emission in intense electric field. Proc R Soc Lond A, 1999, 173:1928
Fig. 1.  Schematic diagram of the fabrication process for a planar-gate field emission electron source with patterned CNT emitters. (a) Deposition of Cr/Cu/Cr multilayer films. (b) Etching Cr/Cu/Cr layer to form the cathode and gate electrodes. (c) Formation of Al$_{2}$O$_{3}$ bars by lift-off method. (d) Electrophoretic deposition of CNT field emitters.

Fig. 2.  Simulation results of electric field distributions and electron trajectories near the cathode at anode-gate gap of 1000 $\mu $m. (a)-(c) Electric field distributions at different structural parameters. Anode and gate voltage is 2000 V and 100 V, respectively. (d)-(f) Electron trajectories at different gate voltages with anode voltage of 2000 V at C-G gap of 50 $\mu $m.

Fig. 3.  Morphology of the novel planar-gate electron source with a patterned CNT field emitter. (a) View image of planar-gate triode investigated by optical microscopy. (b) Viewing image of planar-gate electron sources with a patterned CNT emitter. Inset 1 is the SEM images of CNT field emitters and inset 2 is a TEM image of a CNT field emitter.

Fig. 4.  The experimental setup for investigating field emission characteristics.

Fig. 5.  Current-voltage $(I$-$V)$ characteristics of the planar-gate electron source with patterned CNT emitters at different C-G gaps. Anode voltage is 2000 V and the distance between anode and cathode is 1000 $\mu $m. The inset presents the F-N plots of $d_\text{C-G}$ $=$ 50 $\mu$m.

Fig. 6.  Simulation results of electric field distributions near the cathode under different gate voltages with anode voltage of 2000 V at A-C gap of 1000 $\mu $m.

Fig. 7.  The field emission image of the planar-gate electron source with patterned CNT field emitters at a C-G gap of 50 $\mu $m. The gate voltage and anode voltage are 130 V and 2000 V, respectively.

[1]
De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science, 1995, 270(5239):1179 doi: 10.1126/science.270.5239.1179
[2]
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354:56 doi: 10.1038/354056a0
[3]
Xiao X J, Ye Y, Guo T L, et al. Improved filed emission properties of carbon nanotubes by nickel electroplating and corrosion. Journal of Semiconductors, 2012, 33(5):053004 doi: 10.1088/1674-4926/33/5/053004
[4]
Zhang Y A, Lin J Y, Guo T L, et al. Stable field emission from planar-gate electron source with CNTs by electrophoretic deposition. Solid-State Electron, 2012, 67(1):6 doi: 10.1016/j.sse.2011.08.005
[5]
Zheng L W, Hu L Q, Guo T L, et al. Improved of the field emission properties carbon nanotubes by CNT/Fe3O4 composite electrophoretic deposition. Journal of Semiconductors, 2012, 32(12):0126001 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=11060101&flag=1
[6]
Choi W B, Chung D S, Kang J H, et al. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett, 1999, 75(20):3129 doi: 10.1063/1.125253
[7]
Guo P S, Chen T, Chen Y W, et al. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters. Solid-State Electron, 2008, 52(6):877 doi: 10.1016/j.sse.2008.01.023
[8]
Lee S H, Ma C M, Teng C C, et al. The effect of a magnetic field on the graphitization of carbon nanotubes and its application in field emission. Diamond Relat Mater, 2012, 25:111 doi: 10.1016/j.diamond.2012.02.019
[9]
Choi H Y, Chang W S, Kim H S, et al. Acquisition of X-ray images by using a CNT cold emitter. Phys Lett A, 2006, 357:36 doi: 10.1016/j.physleta.2006.04.015
[10]
Silan J L, Niemann D L, Ribaya B P, et al. Investigation of carbon nanotube field emitter geometry for increased current density. Solid-State Electron, 2010, 54(12):1543 doi: 10.1016/j.sse.2010.07.004
[11]
Jung Y J, Son G H, Park J H, et al. Fabrication and properties of under-gated triode with CNT emitter for flat lamp. Diamond Relat Mater, 2005, 14(11/12):2112 http://www.sciencedirect.com/science/article/pii/S0925963505002761
[12]
Lee J, Jung Y, Song J Y, et al. High-performance field emission from a carbon nanotube carpet. Carbon, 2012, 50(12):3889 http://www.sciencedirect.com/science/article/pii/S0008622312003478
[13]
Jang E S, Goak J C, Lee H S, et al. Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters. Appl Surf Sci, 2010, 256(22):6838 doi: 10.1016/j.apsusc.2010.04.098
[14]
Choi Y C, Lee J W, Lee S K, et al. The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit. Nanotechnology, 2008, 19(23):235306 doi: 10.1088/0957-4484/19/23/235306
[15]
Song M S, Park Y K, Yun J J, et al. Distributed circuit model for cold cathode fluorescent lamps in back-light unit of liquid crystal display. Display, 2010, 31(2):104 doi: 10.1016/j.displa.2010.02.006
[16]
Huang W, Li J M, Yang L M, et al. Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display. Optics & Laser Technology, 2011, 43(1):214 http://www.sciencedirect.com/science/article/pii/S0030399210001611?via%3Dihub
[17]
Kim Y C, Kang H S, Cho E, et al. Building a backlight unit with lateral gate structure based on carbon nanotube field emitters. Nanotechnology, 2009, 20(9):095204 doi: 10.1088/0957-4484/20/9/095204
[18]
Wang F H, Lin T C, Tzeng S D, et al. Field emission properties of carbon nanotube cathodes produced using composite plating. Appl Surf Sci, 2010, 256(24):7600 doi: 10.1016/j.apsusc.2010.06.010
[19]
Park J H, Son G H, Moon J S, et al. Screen printed carbon nanotube field emitter array for lighting source application. J Vac Sci Technol B, 2005, 23(2):749 doi: 10.1116/1.1851535
[20]
Cao Y B, Lei W, Liu M, et al. Ion bombardment in a normal-gate FED. Appl Surf Sci, 2005, 243(1-4):19 doi: 10.1016/j.apsusc.2004.06.097
[21]
Choi Y S, Kang J H, Kim H Y, et al. A simple structure and fabrication of carbon-nanotube field emission display. Appl Surf Sci, 2004, 221(1-4):370 doi: 10.1016/S0169-4332(03)00935-8
[22]
Zhang Y A, Wu C X, Guo T L, et al. An improved planar-gate triode with CNTs field emitters by electrophoretic deposition. Appl Surf Sci, 2011, 257(8):3259 doi: 10.1016/j.apsusc.2010.10.153
[23]
Lu W H, Song H, Jin Y X, et al. Electrophoresis deposition and field emission characteristics of planar-gate-type electron source with carbon nanotubes. Physica B, 2008, 403(10/11):1796 http://www.sciencedirect.com/science/article/pii/S0921452607008897
[24]
Su S H, Chiang W T, Lin C C, et al. Multi-wall carbon nanotubes:purification, morphology and field emission performance. Physica E, 2008, 40(7):2322 doi: 10.1016/j.physe.2007.09.087
[25]
Fowler R H, Nordheim L W. Electron emission in intense electric field. Proc R Soc Lond A, 1999, 173:1928
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2050 Times PDF downloads: 18 Times Cited by: 0 Times

    History

    Received: 09 October 2012 Revised: 14 December 2012 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units[J]. Journal of Semiconductors, 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005 Y N G Zhang, T H Lin, X Y Zeng, X T Zhou, T L Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units[J]. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005.Export: BibTex EndNote
      Citation:
      Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units[J]. Journal of Semiconductors, 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

      Y N G Zhang, T H Lin, X Y Zeng, X T Zhou, T L Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units[J]. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005.
      Export: BibTex EndNote

      Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units

      doi: 10.1088/1674-4926/34/6/064005
      Funds:

      the National Natural Science Foundation of China 61106053

      the Technology Projects of Department of Education, Fujian Province, China JA11014

      the National Natural Science Foundation of China 61106053

      Project supported by the National Natural Science Foundation of China (Nos. 61106053, 61106053) and the Technology Projects of Department of Education, Fujian Province, China (No. JA11014)

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return