SEMICONDUCTOR MATERIALS

Large area graphene produced via the assistance of surface modification

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li and Yang Xia

+ Author Affiliations

 Corresponding author: Xie Jing,Email:xiejing@ime.ac.cn

PDF

Abstract: We develop a novel and convenient method to prepare large area single-layer and multi-layer graphene through surface modification with oxygen plasma. The obtained large area single-layer graphene is dozens of microns wide in the lateral dimension and characterized by optical microscopy, atomic force microscopy. Raman spectroscopy show multilayer graphene has less disorder density than single-layer graphene. X-ray photoelectron spectroscopy (XPS) analysis shows that hydroxyl groups are formed on the HOPG surface during oxygen plasma pre-treatment. Hydrogen bonds develop between hydroxyl groups on HOPG surface and silanol groups on hydroxylated SiO2/Si substrate, which facilitate the transfer process. This study may provide a potential approach to develop graphene-based devices by using the large area lithographic printing process.

Key words: graphenehydrogen-bondoxygen plasmahydroxyl groups



[1]
Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8):2127 doi: 10.1016/j.carbon.2010.01.058
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3):183 doi: 10.1038/nmat1849
[3]
Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene. J Mater Chem, 2010, 20(12):2277 doi: 10.1039/b920539j
[4]
Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696):666 doi: 10.1126/science.1102896
[5]
Wang D C, Zhang Y M, Zhang Y M, et al. Raman analysis of epitaxial graphene on 6H-SiC (0001) substrates under low pressure environment. Journal of Semiconductors, 2011, 32(11):113003 doi: 10.1088/1674-4926/32/11/113003
[6]
Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene. Nat Nanotech, 2008, 4(1):25 http://yylab.seas.ucla.edu/papers/vincent_high%20throughput%20solution%20processing%20of%20large%20scale%20graphene_2009.pdf
[7]
Yuan G D, Zhang W J, Yang Y, et al. Graphene sheets via microwave chemical vapor deposition. Chem Phys Lett, 2009, 467(4-6):361 doi: 10.1016/j.cplett.2008.11.059
[8]
Zhao G, Shao D, Chen C, et al. Synthesis of few-layered graphene by H2O2 plasma etching of graphite. Appl Phys Lett, 2011, 98(18):183114 doi: 10.1063/1.3589354
[9]
Wang Y J, Miao C Q, Huang B C, et al. Scalable synthesis of graphene on patterned Ni and transfer. IEEE Trans Electron Devices, 2010, 57(12):3472 doi: 10.1109/TED.2010.2076337
[10]
Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun, 2012, 3:699 doi: 10.1038/ncomms1702
[11]
Huc V, Bendiab N, Rosman N, et al. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology, 2008, 19(45):455601 doi: 10.1088/0957-4484/19/45/455601
[12]
Liang X, Fu Z, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett, 2007, 7(12):3840 doi: 10.1021/nl072566s
[13]
Bajpai R, Roy S, Jain L, et al. Facile one-step transfer process of graphene. Nanotechnology, 2011, 22(22):225606 doi: 10.1088/0957-4484/22/22/225606
[14]
Liu L H, Yan M. Simple method for the covalent immobilization of graphene. Nano Lett, 2009, 9(9):3375 doi: 10.1021/nl901669h
[15]
Goler S, Piazza V, Roddaro S, et al. Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures. J Appl Phys, 2011, 110(6):064308 doi: 10.1063/1.3633260
[16]
Nakahara M, Sanada Y. Modification of pyrolytic graphite surface with plasma irradiation. J Mater Sci, 1993, 28(5):1327 doi: 10.1007/BF01191973
[17]
Evans J F, Kuwana. Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces. Anal Chem, 1977, 49(11):1632 doi: 10.1021/ac50019a042
[18]
Cvelbar U, Markoli B, Poberaj I, et al. Formation of functional groups on graphite during oxygen plasma treatment. Appl Surf Sci, 2006, 253(4):1861 doi: 10.1016/j.apsusc.2006.03.028
[19]
You H X, Brown N, Al-Assadi K, et al. Surface characterization of highly oriented pyrolytic graphite modified by oxygen radio-frequency plasmas. J Mater Sci Lett, 1993, 12(4):201 doi: 10.1007/BF00539797
[20]
Seah C M, Chai S P, Ichikawa S, et al. Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol-PEG colloidal solution. Carbon, 2012, 50(3):960 doi: 10.1016/j.carbon.2011.09.059
[21]
Sabio J, Seoánez C, Fratini S, et al. Electrostatic interactions between graphene layers and their environment. Phys Rev B, 2008, 77(19):195409 doi: 10.1103/PhysRevB.77.195409
[22]
Ni Z H, Wang H M, Ma Y, et al. Tunable stress and controlled thickness modification in graphene by annealing. Acs Nano, 2008, 2(5):1033 doi: 10.1021/nn800031m
[23]
Martins Ferreira E H, Moutinho M V O, Stavale F, et al. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys Rev B, 2010, 82(12):125429 doi: 10.1103/PhysRevB.82.125429
[24]
Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 97(18):187401 doi: 10.1103/PhysRevLett.97.187401
[25]
Nakahara M, Sanada Y. Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment. J Mater Sci, 1994, 29(12):3193 doi: 10.1007/BF00356662
[26]
Kim Y Y, Lim W S, Park J B, et al. Layer by layer etching of the highly oriented pyrolythic graphite by using atomic layer etching. J Electrochem Soc, 2011, 158(12):D710 doi: 10.1149/2.061112jes
[27]
Dieckhoff S, Schlett V, Possart W, et al. XPS studies of thin polycyanurate films on silicon wafers. Fresenius J Anal Chem, 1995, 353(3/4):278 doi: 10.1007%2FBF00322052.pdf
[28]
Nagashio K, Yamashita T, Nishimura T, et al. Electrical transport properties of graphene on SiO2 with specific surface structures. J Appl Phys, 2011, 110(2):024513 doi: 10.1063/1.3611394
[29]
Zhang Y, Small J P, Pontius W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett, 2005, 86(7):073104 doi: 10.1063/1.1862334
Fig. 1.  (a) Optical micrograph of graphene transferred to the SiO$_{2}$/Si substrate. (b) Atomic force micrograph of the selected area as shown in Fig. 1(a). Height measurements are marked by the measuring line. The height of the transferred graphene is $\sim$0.865 nm.

Fig. 2.  Raman spectra of a prepared graphene sheet on SiO$_{2}$/Si. Raman spectra of single-layer graphene, three-layer graphene and a thick flake ($\sim $ten layers) acquired under the same conditions. The inset is the enlarged 2D band regions with fitting curves of single-layer graphene, three-layer graphene and ten-layer graphene.

Fig. 3.  (a) Survey of XPS spectra of untreated HOPG and oxygen plasma treated HOPG at 10 W for 1 min. (b) High-resolution C1s XPS spectra of HOPG after plasma treatment. The inset of (b) is the magnified XPS spectrum and fitting curves in the low intensity area.

Fig. 4.  (a) Schematics of surface structures for silica before and after treatment by Piranha solution. (b) Schematic diagram of transfer printing. Hydrogen bonds form between the HOPG surface and silica and facilitate the transfer.

[1]
Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8):2127 doi: 10.1016/j.carbon.2010.01.058
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3):183 doi: 10.1038/nmat1849
[3]
Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene. J Mater Chem, 2010, 20(12):2277 doi: 10.1039/b920539j
[4]
Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696):666 doi: 10.1126/science.1102896
[5]
Wang D C, Zhang Y M, Zhang Y M, et al. Raman analysis of epitaxial graphene on 6H-SiC (0001) substrates under low pressure environment. Journal of Semiconductors, 2011, 32(11):113003 doi: 10.1088/1674-4926/32/11/113003
[6]
Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene. Nat Nanotech, 2008, 4(1):25 http://yylab.seas.ucla.edu/papers/vincent_high%20throughput%20solution%20processing%20of%20large%20scale%20graphene_2009.pdf
[7]
Yuan G D, Zhang W J, Yang Y, et al. Graphene sheets via microwave chemical vapor deposition. Chem Phys Lett, 2009, 467(4-6):361 doi: 10.1016/j.cplett.2008.11.059
[8]
Zhao G, Shao D, Chen C, et al. Synthesis of few-layered graphene by H2O2 plasma etching of graphite. Appl Phys Lett, 2011, 98(18):183114 doi: 10.1063/1.3589354
[9]
Wang Y J, Miao C Q, Huang B C, et al. Scalable synthesis of graphene on patterned Ni and transfer. IEEE Trans Electron Devices, 2010, 57(12):3472 doi: 10.1109/TED.2010.2076337
[10]
Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun, 2012, 3:699 doi: 10.1038/ncomms1702
[11]
Huc V, Bendiab N, Rosman N, et al. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology, 2008, 19(45):455601 doi: 10.1088/0957-4484/19/45/455601
[12]
Liang X, Fu Z, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett, 2007, 7(12):3840 doi: 10.1021/nl072566s
[13]
Bajpai R, Roy S, Jain L, et al. Facile one-step transfer process of graphene. Nanotechnology, 2011, 22(22):225606 doi: 10.1088/0957-4484/22/22/225606
[14]
Liu L H, Yan M. Simple method for the covalent immobilization of graphene. Nano Lett, 2009, 9(9):3375 doi: 10.1021/nl901669h
[15]
Goler S, Piazza V, Roddaro S, et al. Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures. J Appl Phys, 2011, 110(6):064308 doi: 10.1063/1.3633260
[16]
Nakahara M, Sanada Y. Modification of pyrolytic graphite surface with plasma irradiation. J Mater Sci, 1993, 28(5):1327 doi: 10.1007/BF01191973
[17]
Evans J F, Kuwana. Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces. Anal Chem, 1977, 49(11):1632 doi: 10.1021/ac50019a042
[18]
Cvelbar U, Markoli B, Poberaj I, et al. Formation of functional groups on graphite during oxygen plasma treatment. Appl Surf Sci, 2006, 253(4):1861 doi: 10.1016/j.apsusc.2006.03.028
[19]
You H X, Brown N, Al-Assadi K, et al. Surface characterization of highly oriented pyrolytic graphite modified by oxygen radio-frequency plasmas. J Mater Sci Lett, 1993, 12(4):201 doi: 10.1007/BF00539797
[20]
Seah C M, Chai S P, Ichikawa S, et al. Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol-PEG colloidal solution. Carbon, 2012, 50(3):960 doi: 10.1016/j.carbon.2011.09.059
[21]
Sabio J, Seoánez C, Fratini S, et al. Electrostatic interactions between graphene layers and their environment. Phys Rev B, 2008, 77(19):195409 doi: 10.1103/PhysRevB.77.195409
[22]
Ni Z H, Wang H M, Ma Y, et al. Tunable stress and controlled thickness modification in graphene by annealing. Acs Nano, 2008, 2(5):1033 doi: 10.1021/nn800031m
[23]
Martins Ferreira E H, Moutinho M V O, Stavale F, et al. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys Rev B, 2010, 82(12):125429 doi: 10.1103/PhysRevB.82.125429
[24]
Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 97(18):187401 doi: 10.1103/PhysRevLett.97.187401
[25]
Nakahara M, Sanada Y. Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment. J Mater Sci, 1994, 29(12):3193 doi: 10.1007/BF00356662
[26]
Kim Y Y, Lim W S, Park J B, et al. Layer by layer etching of the highly oriented pyrolythic graphite by using atomic layer etching. J Electrochem Soc, 2011, 158(12):D710 doi: 10.1149/2.061112jes
[27]
Dieckhoff S, Schlett V, Possart W, et al. XPS studies of thin polycyanurate films on silicon wafers. Fresenius J Anal Chem, 1995, 353(3/4):278 doi: 10.1007%2FBF00322052.pdf
[28]
Nagashio K, Yamashita T, Nishimura T, et al. Electrical transport properties of graphene on SiO2 with specific surface structures. J Appl Phys, 2011, 110(2):024513 doi: 10.1063/1.3611394
[29]
Zhang Y, Small J P, Pontius W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett, 2005, 86(7):073104 doi: 10.1063/1.1862334
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2574 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 05 November 2012 Revised: 17 December 2012 Online: Published: 01 July 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification[J]. Journal of Semiconductors, 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006 Y Zhang, W Dou, W Luo, W E Lu, J Xie, C B Li, Y Xia. Large area graphene produced via the assistance of surface modification[J]. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006.Export: BibTex EndNote
      Citation:
      Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification[J]. Journal of Semiconductors, 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

      Y Zhang, W Dou, W Luo, W E Lu, J Xie, C B Li, Y Xia. Large area graphene produced via the assistance of surface modification[J]. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006.
      Export: BibTex EndNote

      Large area graphene produced via the assistance of surface modification

      doi: 10.1088/1674-4926/34/7/073006
      Funds:

      Project supported by the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

      More Information
      • Corresponding author: Xie Jing,Email:xiejing@ime.ac.cn
      • Received Date: 2012-11-05
      • Revised Date: 2012-12-17
      • Published Date: 2013-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return