SEMICONDUCTOR DEVICES

The snap-back effect of an RC-IGBT and its simulations

Wenliang Zhang1, Xiaoli Tian1, Jingfei Tan2 and Yangjun Zhu1, 2,

+ Author Affiliations

 Corresponding author: Zhu Yangjun, Email:zhuyangjun@ime.ac.cn

PDF

Abstract: The RC-IGBT (reverse conducting insulated gate bipolar transistor) is a new kind of power semiconductor device which has many advantages such as smaller chip size, higher power density, lower manufacturing cost, softer turn off behavior, and better reliability. However, its performance has a number of drawbacks, such as the snap-back effect. In this paper, an introduction about the snap-back effect of the RC-IGBT is given firstly. Then the physical explanations are presented with two simplified models. After that, some numerical simulations are carried out to verify the correctness of the models.

Key words: RC-IGBTprimary snap-back effectsecondary snap-back effect



[1]
Cheng Xu, Wu Yu, Liu Xingming, et al. A new structure IGBT with high performance. Chinese Journal of Semiconductors, 2003, 24(6):586 doi: 10.1002/eej.4391240405/abstract
[2]
Chu Weili, Zhu Yangjun, Zhang Jie, et al. SPT+-IGBT characteristics and optimization. Chinese Journal of Semiconductors, 2013, 34(1):014005 doi: 10.1088/1674-4926/34/1/014005
[3]
Wu Yu, Lu Xiuhong, Kang Baowei, et al. A novel low power loss IGBT (LPL-IGBT) and its simulation. Chinese Journal of Semiconductors, 2001, 22(12):1565(in Chinese) http://www.oalib.com/paper/1519507
[4]
Baliga B J. Enhancement-and depletion-mode vertical-channel MOS gated thyristors. Electron Lett, 1979, 15(20):645 doi: 10.1049/el:19790459
[5]
Wang Bo, Tan Jingfei, Zhang Wenliang, et al. A simulation study on a novel trench SJ IGBT. Journal of Semiconductors, 2012, 33(11):114002 doi: 10.1088/1674-4926/33/11/114002
[6]
Darwishand M, Board K. Lateral RESURFED COMFET. Electron Lett, 1984, 20(12):519 doi: 10.1049/el:19840360
[7]
Benda V, Gowar J, Grant D A. Power semiconductor devices:theory and applications. Chichester:John Willey & Sons, 1999
[8]
Baliga B J. Fundamentals of power semiconductor devices. New York:Springer Science and Business Media, 2008
[9]
Khanna V K. The insulated gate bipolar transistor (IGBT) theory and design. New Jersey:IEEE Press, 2003
[10]
Rulthing H, Hille F, Niedernostheide F J, et al. 600 V reverse conducting (RC-) IGBT for drives applications in ultra-thin wafer technology. Proc ISPSD, 2007:89 https://etrij.etri.re.kr/etrij/journal/article/pubreader.do?volume=35&issue=4&page=603&fileId=SPF-1374798117422
[11]
Rahimo M, Klaka S. High voltage semiconductor technologies. 13th European Conference on Power Electronics and Applications, Barcelona, 2009:1 http://ieeexplore.ieee.org/document/5279073/
[12]
Storasta L, Kopta A, Rahimo M, et al. A comparison of charge dynamics in the reverse-conducting RC IGBT and bi-mode insulated gate transistor BiGT. Proc ISPSD, 2010:391 https://www.jstage.jst.go.jp/article/elex/14/17/14_14.20170677/_pdf
[13]
Storasta L, Rahimo M, Bellini M, et al. The radial layout design concept for the bi-mode insulated gate transistor. Proc ISPSD, 2011:56 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005158057
[14]
Takahashi H, Yamamoto A, Anon S, et al. 1200 V reverse conducting IGBT. Proc ISPSD, 2004:133
[15]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). EPE, 2009
[16]
Rahimo M, Kopta A, Schlapbach U, et al. The bi-mode insulated gate transistor (BiGT)——a potential technology for higher power applications. Proc ISPSD, 2009:283 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=5279012&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D5%26rowsPerPage%3D100%26queryText%3D%28power+transistors+%29metadata
Fig. 1.  Cross section of one cell of (a) a conventional IGBT and (b) an RC-IGBT.

Fig. 2.  Typical $I$$V$ characteristics of an RC-IGBT compared to a conventional IGBT[12].

Fig. 3.  Primary snap-back effect of an RC-IGBT.

Fig. 4.  Secondary snap-back effect of an RC-IGBT.

Fig. 5.  Structure for primary snap-back effect simulation.

Fig. 6.  $I$$V$ characteristics of primary snap-back effect.

Fig. 7.  Hole density distribution of primary snap-back effect.

Fig. 8.  Structure for secondary snap-back effect simulation.

Fig. 9.  $I$$V$ characteristics of secondary snap-back effect.

Fig. 10.  Hole density distribution of secondary snap-back effect.

Fig. 11.  $L_{\rm p}$ dependence of the current density for the on-set of carrier injection.

Fig. 12.  $L_{\rm p}$ dependence of $V_{\rm p}$ before the snap-back.

[1]
Cheng Xu, Wu Yu, Liu Xingming, et al. A new structure IGBT with high performance. Chinese Journal of Semiconductors, 2003, 24(6):586 doi: 10.1002/eej.4391240405/abstract
[2]
Chu Weili, Zhu Yangjun, Zhang Jie, et al. SPT+-IGBT characteristics and optimization. Chinese Journal of Semiconductors, 2013, 34(1):014005 doi: 10.1088/1674-4926/34/1/014005
[3]
Wu Yu, Lu Xiuhong, Kang Baowei, et al. A novel low power loss IGBT (LPL-IGBT) and its simulation. Chinese Journal of Semiconductors, 2001, 22(12):1565(in Chinese) http://www.oalib.com/paper/1519507
[4]
Baliga B J. Enhancement-and depletion-mode vertical-channel MOS gated thyristors. Electron Lett, 1979, 15(20):645 doi: 10.1049/el:19790459
[5]
Wang Bo, Tan Jingfei, Zhang Wenliang, et al. A simulation study on a novel trench SJ IGBT. Journal of Semiconductors, 2012, 33(11):114002 doi: 10.1088/1674-4926/33/11/114002
[6]
Darwishand M, Board K. Lateral RESURFED COMFET. Electron Lett, 1984, 20(12):519 doi: 10.1049/el:19840360
[7]
Benda V, Gowar J, Grant D A. Power semiconductor devices:theory and applications. Chichester:John Willey & Sons, 1999
[8]
Baliga B J. Fundamentals of power semiconductor devices. New York:Springer Science and Business Media, 2008
[9]
Khanna V K. The insulated gate bipolar transistor (IGBT) theory and design. New Jersey:IEEE Press, 2003
[10]
Rulthing H, Hille F, Niedernostheide F J, et al. 600 V reverse conducting (RC-) IGBT for drives applications in ultra-thin wafer technology. Proc ISPSD, 2007:89 https://etrij.etri.re.kr/etrij/journal/article/pubreader.do?volume=35&issue=4&page=603&fileId=SPF-1374798117422
[11]
Rahimo M, Klaka S. High voltage semiconductor technologies. 13th European Conference on Power Electronics and Applications, Barcelona, 2009:1 http://ieeexplore.ieee.org/document/5279073/
[12]
Storasta L, Kopta A, Rahimo M, et al. A comparison of charge dynamics in the reverse-conducting RC IGBT and bi-mode insulated gate transistor BiGT. Proc ISPSD, 2010:391 https://www.jstage.jst.go.jp/article/elex/14/17/14_14.20170677/_pdf
[13]
Storasta L, Rahimo M, Bellini M, et al. The radial layout design concept for the bi-mode insulated gate transistor. Proc ISPSD, 2011:56 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005158057
[14]
Takahashi H, Yamamoto A, Anon S, et al. 1200 V reverse conducting IGBT. Proc ISPSD, 2004:133
[15]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). EPE, 2009
[16]
Rahimo M, Kopta A, Schlapbach U, et al. The bi-mode insulated gate transistor (BiGT)——a potential technology for higher power applications. Proc ISPSD, 2009:283 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=5279012&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D5%26rowsPerPage%3D100%26queryText%3D%28power+transistors+%29metadata
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2462 Times PDF downloads: 47 Times Cited by: 0 Times

    History

    Received: 26 November 2012 Revised: 25 December 2012 Online: Published: 01 July 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenliang Zhang, Xiaoli Tian, Jingfei Tan, Yangjun Zhu. The snap-back effect of an RC-IGBT and its simulations[J]. Journal of Semiconductors, 2013, 34(7): 074007. doi: 10.1088/1674-4926/34/7/074007 W L Zhang, X L Tian, J F Tan, Y J Zhu. The snap-back effect of an RC-IGBT and its simulations[J]. J. Semicond., 2013, 34(7): 074007. doi: 10.1088/1674-4926/34/7/074007.Export: BibTex EndNote
      Citation:
      Wenliang Zhang, Xiaoli Tian, Jingfei Tan, Yangjun Zhu. The snap-back effect of an RC-IGBT and its simulations[J]. Journal of Semiconductors, 2013, 34(7): 074007. doi: 10.1088/1674-4926/34/7/074007

      W L Zhang, X L Tian, J F Tan, Y J Zhu. The snap-back effect of an RC-IGBT and its simulations[J]. J. Semicond., 2013, 34(7): 074007. doi: 10.1088/1674-4926/34/7/074007.
      Export: BibTex EndNote

      The snap-back effect of an RC-IGBT and its simulations

      doi: 10.1088/1674-4926/34/7/074007
      Funds:

      the National Major Science and Technology Special Project of China 2011ZX02504-002

      Project supported by the National Major Science and Technology Special Project of China (No. 2011ZX02504-002)

      More Information
      • Corresponding author: Zhu Yangjun, Email:zhuyangjun@ime.ac.cn
      • Received Date: 2012-11-26
      • Revised Date: 2012-12-25
      • Published Date: 2013-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return