SEMICONDUCTOR DEVICES

Analysis of characteristics of vertical coupling microring resonator

Yuhai Wang, Zhengkun Qin, Chunxu Wang and Lizhong Wang

+ Author Affiliations

 Corresponding author: Qin Zhengkun, Email:zk.qin@yahoo.com.cn

PDF

Abstract: By using the coupled mode theory and the transfer matrix technique, the optical transfer function is presented for analyzing the size of the waveguide, radius of the microring, free spectral range and amplitude coupling ratio of the vertical coupling microring resonator. Under the central wavelength of 1550 nm, optimization and simulation are performed when the central deviation between the ring and the channel is 0, 0.5, 1 μm, respectively, the 3-dB bandwidth of the spectral response is about 0.21, 0.09, 0.03 nm, and the intensity of the nonresonant light is below-30, -40, -50 dB, respectively.

Key words: microring resonatorvertical couplingtransfer functiontransmission spectrum



[1]
Tsilipakos O, Yioultsis T V, Kriezis E E. Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J Appl Phys, 2009, 106(9):093109 doi: 10.1063/1.3256139
[2]
Li Shuai, Wu Yuanda, Yin Xiaojie, et al. Tunable filters based on an SOI nano-wire waveguide micro ring resonator. Journal of Semiconductors, 2011, 32(8):084007 doi: 10.1088/1674-4926/32/8/084007
[3]
Balakrishnan M, Faccini M, Diemeer M B J, et al. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer. Appl Phys Lett, 2008, 92(15):153310 doi: 10.1063/1.2908914
[4]
Ling T, Chen S L, Guo L J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl Phys Lett, 2011, 98(20):204103 doi: 10.1063/1.3589971
[5]
Su Baoqing, Wang Chunxia, Kan Qiang, et al. A novel structure of silicon-on-insulator microring biosensor based on Young's two-slit interference and its simulation. Journal of Semiconductors, 2011, 32(7):074010 doi: 10.1088/1674-4926/32/7/074010
[6]
Wang X Y, Ma C S, E S L, et al. Parameter optimization and characteristic analysis of a polymer microring resonant wavelength multiplexer. Opt Laser Technol, 2005, 37(4):337 doi: 10.1016/j.optlastec.2004.04.016
[7]
Ma C S, Xin Y, Xu Y Z, et al. Analysis of a 1×16 polymer microring resonant wavelength demulti/multiplexer with double seriated identical microrings in every filter element. J Opt A:Pure Appl Opt, 2005, 7(3):135 doi: 10.1088/1464-4258/7/3/007
[8]
Yan X, Ma C S, Zheng C T, et al. Analysis of polymer electro-optic microring resonator switches. Opt Laser Technol, 2010, 42(3):526 doi: 10.1016/j.optlastec.2009.09.011
[9]
Stamataki I, Kapsalis A, Mikroulis S, et al. Modal properties of all-active InGaAsP/InP microring lasers. Opt Commun, 2009, 282(12):2388 doi: 10.1016/j.optcom.2009.02.072
[10]
Little B E, Chu S T, Pan W, et al. Microring resonator arrays for VLSI photonics. IEEE Photonic Tech L, 2000, 12(3):323 doi: 10.1109/68.826928
[11]
Marcatili E A J. Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Sys Tech J, 1969, 48(7):2071 doi: 10.1002/bltj.1969.48.issue-7
[12]
Oda K, Takato N, Toba H. A wide-FSR waveguide double-ring resonator for optical FDM transmission systems. J Lightwave Technol, 1991, 9(6):728 doi: 10.1109/50.81975
[13]
Yan X, Ma C S, Xu Y Z, et al. Characteristics of vertical bent coupling between straight and curved rectangular optical waveguides. Optik, 2005, 116(8):397 doi: 10.1016/j.ijleo.2005.01.031
Fig. 1.  (a) Diagram of a vertical coupled single microring resonator. (b) Cross-sections and refractive index profiles of the ring and channel.

Fig. 2.  Curves of the effective refractive index $n_{\rm c}$ versus the core thickness $h$ of the ring (solid line) and the channel (dashed line), where $\lambda$ $=$ 1.55 $\mu$m, $a$ $=$ 2 $\mu$m, the refractive index of ring, $n_1$ $=$ 1.6278, $n_2$ $=$ 1.465, $n_3$ $=$ 1, and the refractive index of channel, $n_1$ $=$ 1.6278, $n_2$ $=$ 1.465.

Fig. 3.  Dependence of the ring radius $R$ and FSR on the resonant order $m$ for the central wavelength, where $h_{1}$ $=$ 1.38 $\mu$m, and the values of other parameters are the same as those in Fig. 2.

Fig. 4.  Relation of the amplitude coupling ratio $\kappa$ versus the thickness of coupling layer $d$ and central deviation $\mathit{\Delta }$, where $h_{1}$ $=$ 1.38 $\mu$m, $h_{2}$ $=$ 1.0 $\mu$m, $R$ $=$ 13.0 $\mu$m, and the values of other parameters are the same as those in Fig. 2.

Fig. 5.  Effect of the amplitude coupling ratio $\kappa_{2}$ between the ring and right channel on the transmission spectrum of left channel and right channel around the central wavelength in non-loss situation, and the values of parameters are presented in Table 1.

Fig. 6.  Effect of the amplitude coupling ratio $\kappa$ between the ring and channel on the transmission spectrum of the right channel around the central wavelength in loss situation, and the values of parameters are presented in Table 1.

Fig. 7.  Effect of the FSR and central deviation $\mathit{\Delta }$ on the transmission spectrum of the right channel in loss situation, where $d$ $=$ 0.68 $\mu$m, and the values of parameters are presented in Table 1.

Table 1.   Optimized values of parameters.

[1]
Tsilipakos O, Yioultsis T V, Kriezis E E. Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J Appl Phys, 2009, 106(9):093109 doi: 10.1063/1.3256139
[2]
Li Shuai, Wu Yuanda, Yin Xiaojie, et al. Tunable filters based on an SOI nano-wire waveguide micro ring resonator. Journal of Semiconductors, 2011, 32(8):084007 doi: 10.1088/1674-4926/32/8/084007
[3]
Balakrishnan M, Faccini M, Diemeer M B J, et al. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer. Appl Phys Lett, 2008, 92(15):153310 doi: 10.1063/1.2908914
[4]
Ling T, Chen S L, Guo L J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl Phys Lett, 2011, 98(20):204103 doi: 10.1063/1.3589971
[5]
Su Baoqing, Wang Chunxia, Kan Qiang, et al. A novel structure of silicon-on-insulator microring biosensor based on Young's two-slit interference and its simulation. Journal of Semiconductors, 2011, 32(7):074010 doi: 10.1088/1674-4926/32/7/074010
[6]
Wang X Y, Ma C S, E S L, et al. Parameter optimization and characteristic analysis of a polymer microring resonant wavelength multiplexer. Opt Laser Technol, 2005, 37(4):337 doi: 10.1016/j.optlastec.2004.04.016
[7]
Ma C S, Xin Y, Xu Y Z, et al. Analysis of a 1×16 polymer microring resonant wavelength demulti/multiplexer with double seriated identical microrings in every filter element. J Opt A:Pure Appl Opt, 2005, 7(3):135 doi: 10.1088/1464-4258/7/3/007
[8]
Yan X, Ma C S, Zheng C T, et al. Analysis of polymer electro-optic microring resonator switches. Opt Laser Technol, 2010, 42(3):526 doi: 10.1016/j.optlastec.2009.09.011
[9]
Stamataki I, Kapsalis A, Mikroulis S, et al. Modal properties of all-active InGaAsP/InP microring lasers. Opt Commun, 2009, 282(12):2388 doi: 10.1016/j.optcom.2009.02.072
[10]
Little B E, Chu S T, Pan W, et al. Microring resonator arrays for VLSI photonics. IEEE Photonic Tech L, 2000, 12(3):323 doi: 10.1109/68.826928
[11]
Marcatili E A J. Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Sys Tech J, 1969, 48(7):2071 doi: 10.1002/bltj.1969.48.issue-7
[12]
Oda K, Takato N, Toba H. A wide-FSR waveguide double-ring resonator for optical FDM transmission systems. J Lightwave Technol, 1991, 9(6):728 doi: 10.1109/50.81975
[13]
Yan X, Ma C S, Xu Y Z, et al. Characteristics of vertical bent coupling between straight and curved rectangular optical waveguides. Optik, 2005, 116(8):397 doi: 10.1016/j.ijleo.2005.01.031
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2184 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 03 December 2012 Revised: 30 December 2012 Online: Published: 01 July 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuhai Wang, Zhengkun Qin, Chunxu Wang, Lizhong Wang. Analysis of characteristics of vertical coupling microring resonator[J]. Journal of Semiconductors, 2013, 34(7): 074012. doi: 10.1088/1674-4926/34/7/074012 Y H Wang, Z K Qin, C X Wang, L Z Wang. Analysis of characteristics of vertical coupling microring resonator[J]. J. Semicond., 2013, 34(7): 074012. doi: 10.1088/1674-4926/34/7/074012.Export: BibTex EndNote
      Citation:
      Yuhai Wang, Zhengkun Qin, Chunxu Wang, Lizhong Wang. Analysis of characteristics of vertical coupling microring resonator[J]. Journal of Semiconductors, 2013, 34(7): 074012. doi: 10.1088/1674-4926/34/7/074012

      Y H Wang, Z K Qin, C X Wang, L Z Wang. Analysis of characteristics of vertical coupling microring resonator[J]. J. Semicond., 2013, 34(7): 074012. doi: 10.1088/1674-4926/34/7/074012.
      Export: BibTex EndNote

      Analysis of characteristics of vertical coupling microring resonator

      doi: 10.1088/1674-4926/34/7/074012
      Funds:

      the Science and Technology Development of Jilin Province 201201078

      Project supported by the Science and Technology Development of Jilin Province (Nos. 20110320, 201201078)

      the Science and Technology Development of Jilin Province 20110320

      More Information
      • Corresponding author: Qin Zhengkun, Email:zk.qin@yahoo.com.cn
      • Received Date: 2012-12-03
      • Revised Date: 2012-12-30
      • Published Date: 2013-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return