SEMICONDUCTOR INTEGRATED CIRCUITS

A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

Hongfei Yao, Yuxiong Cao, Danyu Wu, Xiaoxi Ning, Yongbo Su and Zhi Jin

+ Author Affiliations

 Corresponding author: Jin Zhi, jinzhi@ime.ac.cn

PDF

Abstract: A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5$ \times $1.7 mm2 with the emitter area of 16$ \times $1 μm$ \times $15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

Key words: power amplifierW-bandDHBTInP



[1]
Brown A, Brown K, Chen J, et al. W-band GaN power amplifier MMICs. IEEE MTT-S Int Dig, 2011:1 http://ieeexplore.ieee.org/document/5972571/?arnumber=5972571
[2]
Ingram D L, Chen Y C, Kraus. A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier. IEEE RFIC Symp, 1999:95 http://ieeexplore.ieee.org/document/805247/?arnumber=805247
[3]
Maas S, Nelson B, Tait D. Intermodulation distortion in heterojunction bipolar transistors. IEEE Trans Microw Theory Tech, 1992, 40(3):442 doi: 10.1109/22.121719
[4]
Wei Y, Urteaga M, Griffith Z. 75 GHz 80 mW InP DHBT power amplifier. IEEE MTT-S Int Dig, 2003:919 http://ieeexplore.ieee.org/document/1212519/
[5]
Ellis G A, Kurdoghlian A, Bowen R, et al. W-band InP DHBT MMIC power amplifiers. IEEE MTT-S Int Dig, 2004:231 http://ieeexplore.ieee.org/document/1335853/
[6]
Paidi V K, Griffith Z, Wei Y, et al. G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers. IEEE Trans Microw Theory Tech, 2005, 53(2):598 doi: 10.1109/TMTT.2004.840662
[7]
O'Sullivan T, Le M, Partyka P, et al. Design of a 70 GHz power amplifier using a digital InP HBT process. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2007:214
[8]
Cao Y X, Su Y B, Wu D Y, et al. A 75 GHz 13.92 dBm InP DHBT cascode power amplifier. J Infrared Millim Wave, 2012, 31(4):294 doi: 10.3724/SP.J.1010.2012.00294
[9]
Jin Z, Su Y B, Cheng W, et al. High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage. Chin Phys Lett, 2008, 25(7):2683 doi: 10.1088/0256-307X/25/7/097
[10]
Jin Z, Su Y B, Cheng W, et al. High current multi-finger InGaAs/InP double heterojunction bipolar transistor with the maximum oscillation frequency 253 GHz. Chin Phys Lett, 2008, 25(8):3075 doi: 10.1088/0256-307X/25/8/091
[11]
Monzon C. A small dual-frequency transformer in two sections. IEEE Trans Microw Theory Tech, 2003, 51(4):1157 doi: 10.1109/TMTT.2003.809675
[12]
Cao Y X, Jin Z, Ge J, et al. A symbolically defined InP double heterojunction bipolar transistor large-signal model. Journal of Semiconductors, 2009, 30(12):37 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=09060503&flag=1
[13]
Bohannan K, Sercu J, Moore J. Demystifying ports $ times $ grounds in ADS momentum. http://www.agilent.com. (20011-08-26)
[14]
O'Sullivan T. Design of millimeter-wave power amplifiers using InP heterojunction bipolar transistors. San Diego:University of California, 2009 http://escholarship.org/uc/item/0z87t0m5?view=search
[15]
Ge J, Cao Y X, Wu D Y, et al. A combined model with electro-thermal coupling and electromagnetic simulation for microwave multi-finger InP-based DHBTs. IEEE Trans Electron Devices, 2012, 59(3):673 doi: 10.1109/TED.2011.2177987
[16]
Wei Y. Wide bandwidth power heterojunction bipolar transistor and amplifiers. Santa Barbara:University of California, 2003
[17]
Wu Y, Li Y, Li S L. A dual-frequency transformer for complex impedances with two unequal sections. IEEE Microw Wireless Compon Lett, 2009, 19(2):77 doi: 10.1109/LMWC.2008.2011315
[18]
Freitag R G. A unified analysis of MMIC power amplifier stability. IEEE MTT-S Int Dig, 1992:297 http://ieeexplore.ieee.org/document/187971/?reload=true&arnumber=187971&punumber%3D646
[19]
Platzker A, Struble W, Hetzler K T. Instabilities diagnosis and the role of K in microwave circuits. IEEE MTT-S Int Dig, 1993:1185 http://ieeexplore.ieee.org/document/277082/?arnumber=277082
[20]
Struble W, Platzker A. A rigorous yet simple method for determining stability of linear N-port networks. GaAs IC Symp Dig, 1993:1 http://ci.nii.ac.jp/naid/10012635537
[21]
Jackson R W. Rollett proviso in the stability of linear microwave circuits—a tutorial. IEEE Trans Microw Theory Tech, 2006, 40(3):993 http://ieeexplore.ieee.org/document/1603843/?arnumber=1603843
[22]
De Hek A P. Design, realisation and test of GaAs-based monolithic integrated X-band high-power amplifiers. Eindhoven:Technische Universiteit Eindhoven, 2002
Fig. 1.  Block diagram of the two-stage power amplifier (each triangle represents one cell unit).

Fig. 2.  (a) Schematic of the four-cascode-pair cell unit. (b) Lay

Fig. 3.  (a) The input matching network. (b) The output matching network.

Fig. 4.  Ladder-like inter-stage matching network for matching N parallel cell-units

Fig. 5.  Schematic diagram of the bias network.

Fig. 6.  The circuit diagram for stability analysis.

Fig. 7.  Simulated K factor of the whole circuit

Fig. 8.  The Nyquist plots of the open-loop transfer functions with the loop break points at (a) T3, (b) T4, (c) T5, (d) T6.

Fig. 9.  Photograph of the fabricated MMIC, 1.5 $ \times $ 1.7 mm2.

Fig. 10.  Measured and simulated small-signal S-parameters.

Fig. 11.  Measured small-signal S-parameters with the bias current lowered to 140 mA.

Fig. 12.  The PA's output spectrum which shows only the existence of the input signal.

Fig. 13.  Power measurement block diagram.

Fig. 14.  Measured output power versus input power compared with the simulated results

Fig. 15.  The output power curves versus frequency (the input power is also displayed).

Table 1.   Performance summary and comparison.

[1]
Brown A, Brown K, Chen J, et al. W-band GaN power amplifier MMICs. IEEE MTT-S Int Dig, 2011:1 http://ieeexplore.ieee.org/document/5972571/?arnumber=5972571
[2]
Ingram D L, Chen Y C, Kraus. A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier. IEEE RFIC Symp, 1999:95 http://ieeexplore.ieee.org/document/805247/?arnumber=805247
[3]
Maas S, Nelson B, Tait D. Intermodulation distortion in heterojunction bipolar transistors. IEEE Trans Microw Theory Tech, 1992, 40(3):442 doi: 10.1109/22.121719
[4]
Wei Y, Urteaga M, Griffith Z. 75 GHz 80 mW InP DHBT power amplifier. IEEE MTT-S Int Dig, 2003:919 http://ieeexplore.ieee.org/document/1212519/
[5]
Ellis G A, Kurdoghlian A, Bowen R, et al. W-band InP DHBT MMIC power amplifiers. IEEE MTT-S Int Dig, 2004:231 http://ieeexplore.ieee.org/document/1335853/
[6]
Paidi V K, Griffith Z, Wei Y, et al. G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers. IEEE Trans Microw Theory Tech, 2005, 53(2):598 doi: 10.1109/TMTT.2004.840662
[7]
O'Sullivan T, Le M, Partyka P, et al. Design of a 70 GHz power amplifier using a digital InP HBT process. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2007:214
[8]
Cao Y X, Su Y B, Wu D Y, et al. A 75 GHz 13.92 dBm InP DHBT cascode power amplifier. J Infrared Millim Wave, 2012, 31(4):294 doi: 10.3724/SP.J.1010.2012.00294
[9]
Jin Z, Su Y B, Cheng W, et al. High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage. Chin Phys Lett, 2008, 25(7):2683 doi: 10.1088/0256-307X/25/7/097
[10]
Jin Z, Su Y B, Cheng W, et al. High current multi-finger InGaAs/InP double heterojunction bipolar transistor with the maximum oscillation frequency 253 GHz. Chin Phys Lett, 2008, 25(8):3075 doi: 10.1088/0256-307X/25/8/091
[11]
Monzon C. A small dual-frequency transformer in two sections. IEEE Trans Microw Theory Tech, 2003, 51(4):1157 doi: 10.1109/TMTT.2003.809675
[12]
Cao Y X, Jin Z, Ge J, et al. A symbolically defined InP double heterojunction bipolar transistor large-signal model. Journal of Semiconductors, 2009, 30(12):37 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=09060503&flag=1
[13]
Bohannan K, Sercu J, Moore J. Demystifying ports $ times $ grounds in ADS momentum. http://www.agilent.com. (20011-08-26)
[14]
O'Sullivan T. Design of millimeter-wave power amplifiers using InP heterojunction bipolar transistors. San Diego:University of California, 2009 http://escholarship.org/uc/item/0z87t0m5?view=search
[15]
Ge J, Cao Y X, Wu D Y, et al. A combined model with electro-thermal coupling and electromagnetic simulation for microwave multi-finger InP-based DHBTs. IEEE Trans Electron Devices, 2012, 59(3):673 doi: 10.1109/TED.2011.2177987
[16]
Wei Y. Wide bandwidth power heterojunction bipolar transistor and amplifiers. Santa Barbara:University of California, 2003
[17]
Wu Y, Li Y, Li S L. A dual-frequency transformer for complex impedances with two unequal sections. IEEE Microw Wireless Compon Lett, 2009, 19(2):77 doi: 10.1109/LMWC.2008.2011315
[18]
Freitag R G. A unified analysis of MMIC power amplifier stability. IEEE MTT-S Int Dig, 1992:297 http://ieeexplore.ieee.org/document/187971/?reload=true&arnumber=187971&punumber%3D646
[19]
Platzker A, Struble W, Hetzler K T. Instabilities diagnosis and the role of K in microwave circuits. IEEE MTT-S Int Dig, 1993:1185 http://ieeexplore.ieee.org/document/277082/?arnumber=277082
[20]
Struble W, Platzker A. A rigorous yet simple method for determining stability of linear N-port networks. GaAs IC Symp Dig, 1993:1 http://ci.nii.ac.jp/naid/10012635537
[21]
Jackson R W. Rollett proviso in the stability of linear microwave circuits—a tutorial. IEEE Trans Microw Theory Tech, 2006, 40(3):993 http://ieeexplore.ieee.org/document/1603843/?arnumber=1603843
[22]
De Hek A P. Design, realisation and test of GaAs-based monolithic integrated X-band high-power amplifiers. Eindhoven:Technische Universiteit Eindhoven, 2002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2172 Times PDF downloads: 10 Times Cited by: 0 Times

    History

    Received: 16 November 2012 Revised: 18 January 2013 Online: Published: 01 July 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongfei Yao, Yuxiong Cao, Danyu Wu, Xiaoxi Ning, Yongbo Su, Zhi Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain[J]. Journal of Semiconductors, 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005 H F Yao, Y X Cao, D Y Wu, X X Ning, Y B Su, Z Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain[J]. J. Semicond., 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005.Export: BibTex EndNote
      Citation:
      Hongfei Yao, Yuxiong Cao, Danyu Wu, Xiaoxi Ning, Yongbo Su, Zhi Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain[J]. Journal of Semiconductors, 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005

      H F Yao, Y X Cao, D Y Wu, X X Ning, Y B Su, Z Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain[J]. J. Semicond., 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005.
      Export: BibTex EndNote

      A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

      doi: 10.1088/1674-4926/34/7/075005
      Funds:

      Project supported by the National Basic Research Program of China (No. 2010CB327502)

      the National Basic Research Program of China 2010CB327502

      More Information
      • Corresponding author: Jin Zhi, jinzhi@ime.ac.cn
      • Received Date: 2012-11-16
      • Revised Date: 2013-01-18
      • Published Date: 2013-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return