SEMICONDUCTOR TECHNOLOGY

Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad

Aodong He1, 2, , Bo Liu1, , Zhitang Song1, Yegang Lü1, 2, Juntao Li1, 2, Weili Liu1, Songlin Feng1 and Guanping Wu3

+ Author Affiliations

 Corresponding author: He Aodong, hadhad_he@126.com; Liu Bo, liubo@mail.sim.ac.cn

PDF

Abstract: Chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) is investigated using two typical soft pads (politex REG and AT) in acidic slurry. After CMP, it is found that the removal rate (RR) of a-GST increases with an increase of runs number for both pads. However, it achieves the higher RR and better surface quality of a-GST for an AT pad. The in-situ sheet resistance (Rs) measure shows the higher Rs of a-GST polishing can be gained after CMP using both pads and the high Rs is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads, the surface morphology and characteristics of both new and used pads are analyzed, it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad, and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST, which results in the high RR of a-GST due to enhanced chemical reaction.

Key words: porositysoft padchemical mechanical planarizationGe2Sb2Te5



[1]
Raoux S, Burr G W, Breitwisch M J, et al. Phase-change random access memory:a scalable technology. IBM J Res, 2008, 52:465 doi: 10.1147/rd.524.0465
[2]
Wu Z, Zhang G, Park Y, et al. Controlled recrystallization for low-current RESET programming characteristics of phase-change memory with Ge-doped SbTe. Appl Phys Lett, 2011, 99:143505 doi: 10.1063/1.3641470
[3]
Liu Q B, Song Z T, Zhang K L, et al. Damascene arrays of phase change memory fabricated with chemical mechanical polishing method. Chin Phys Lett, 2006, 23:2296 doi: 10.1088/0256-307X/23/8/091
[4]
McGrath J, Davis C. Polishing pad surface characterisation in chemical mechanical planarization. J Mater Process Technol, 2004, 153/154:666 http://cat.inist.fr/?aModele=afficheN&cpsidt=16317422
[5]
Stavreva Z, Zeidler D, Plotner M. Characteristics in chemical-mechanical polishing of copper:comparison of polishing pads. Appl Surf Sci, 1997, 108:39 doi: 10.1016/S0169-4332(96)00572-7
[6]
Zhong M, Song Z T, Liu B, et al. Oxidant addition effect on Ge2Sb2Te5 phase change film chemical mechanical polishing. J Electrochem Soc, 2008, 155:929 http://journals.cambridge.org/article_S0884291400030880
[7]
Cho J Y, Cui H, Park J H, et al. Role of hydrogen peroxide in alkaline slurry on the polishing rate of polycrystalline Ge2Sb2Te5 film in chemical mechanical polishing. Electrochem Solid-State Lett, 2010, 13:H155
[8]
Yan W X, Wang L Y, Zhang Z F, et al. Chemical mechanical polishing of Ge2Sb2Te5 Using abrasive-free solutions of iron trichloride. Chin Phys Lett, 2012, 29:038301 doi: 10.1088/0256-307X/29/3/038301
[9]
Penta N K, Matovu J B, Veera1 P R D, et al. Role of polycation adsorption in poly-Si, SiO2and Si3N4 removal during chemical mechanical polishing:Effect of polishing pad surface chemistry. Colloid Surf A-Physicochem Eng Asp, 2011, 388:21 doi: 10.1016/j.colsurfa.2011.07.039
[10]
Yoon S Y, Lee J H. A study on optimized conditioner for soft pad in Cu barrier removal. ECS Trans, 2011, 34:597 http://ecst.ecsdl.org/content/34/1/597
[11]
Wang L Y, Song Z T, Zhong M, et al. Mechanism of Ge2Sb2Te5 chemical mechanical polishing. Appl Surf Sci, 2012, 258:5185 doi: 10.1016/j.apsusc.2012.02.001
[12]
He A D, Wang L Y, Song Z T, et al. Amorphous Ge2Sb2Te5 chemical mechanical planarization using (NH4)2S2O8 or H2O2 as oxidizer in acidic slurry. ECS J Solid-State Sci Technol, 2012, 1:179 doi: 10.1149/2.014204jss
[13]
Hooper B J, Byrne G, Galligan S. Pad conditioning in chemical mechanical polishing. J Mater Process Technol, 2002, 123:107 doi: 10.1016/S0924-0136(01)01137-2
[14]
McGrath J, Davis C. Polishing pad surface characterization in chemical mechanical planarization. J Mater Process Technol, 2004, 153/154:666 https://escholarship.org/uc/item/326856vn
[15]
Bajaj R, Desai M, Jairath R, et al. Effect of polishing pad material properties on chemical mechanical polishing (CMP) processes. Mater Res Soc Symp Proc, 1994, 337:637 doi: 10.1557/PROC-337-637
[16]
Moon Y, Park I, Dornfeld D A. Investigation of the relationship between Preston's coefficient and friction coefficient in chemical mechanical polishing (CMP) of silicon. Proc Am Soc Precision Eng (ASPE), ASPE Spring Topical Conference on Silicon, Monterey, 1998, 4:78
[17]
Moon Y, Dornfield D A. Mechanical properties and relationship to process performance of the polishing pad in chemical mechanical polishing (CMP) of silicon. Proc Am Soc Precision Eng (ASPE), ASPE Spring Topical Conference on Silicon, Monterey, 1998, 4:83
Fig. 1.  (Color online) Surface roughness of a-GST under different conditions. (a) Pre-CMP. (b) Post-CMP with REG pad. (c) Post-CMP with AT pad.

Fig. 2.  (Color online) Rs of a-GST polished using different pads at different runs in acidic slurry

Fig. 3.  Surface topography of two new and used condition pads. (a) New REG pad. (b) Used REG pad. (c) New AT pad. (d) Used AT pad.

Fig. 4.  Distribution of porosity size with pads. (a) REG. (b) AT.

Table 1.   Removal rate and Nu of a-GST as a function of pad type and the number of wafer runs.

[1]
Raoux S, Burr G W, Breitwisch M J, et al. Phase-change random access memory:a scalable technology. IBM J Res, 2008, 52:465 doi: 10.1147/rd.524.0465
[2]
Wu Z, Zhang G, Park Y, et al. Controlled recrystallization for low-current RESET programming characteristics of phase-change memory with Ge-doped SbTe. Appl Phys Lett, 2011, 99:143505 doi: 10.1063/1.3641470
[3]
Liu Q B, Song Z T, Zhang K L, et al. Damascene arrays of phase change memory fabricated with chemical mechanical polishing method. Chin Phys Lett, 2006, 23:2296 doi: 10.1088/0256-307X/23/8/091
[4]
McGrath J, Davis C. Polishing pad surface characterisation in chemical mechanical planarization. J Mater Process Technol, 2004, 153/154:666 http://cat.inist.fr/?aModele=afficheN&cpsidt=16317422
[5]
Stavreva Z, Zeidler D, Plotner M. Characteristics in chemical-mechanical polishing of copper:comparison of polishing pads. Appl Surf Sci, 1997, 108:39 doi: 10.1016/S0169-4332(96)00572-7
[6]
Zhong M, Song Z T, Liu B, et al. Oxidant addition effect on Ge2Sb2Te5 phase change film chemical mechanical polishing. J Electrochem Soc, 2008, 155:929 http://journals.cambridge.org/article_S0884291400030880
[7]
Cho J Y, Cui H, Park J H, et al. Role of hydrogen peroxide in alkaline slurry on the polishing rate of polycrystalline Ge2Sb2Te5 film in chemical mechanical polishing. Electrochem Solid-State Lett, 2010, 13:H155
[8]
Yan W X, Wang L Y, Zhang Z F, et al. Chemical mechanical polishing of Ge2Sb2Te5 Using abrasive-free solutions of iron trichloride. Chin Phys Lett, 2012, 29:038301 doi: 10.1088/0256-307X/29/3/038301
[9]
Penta N K, Matovu J B, Veera1 P R D, et al. Role of polycation adsorption in poly-Si, SiO2and Si3N4 removal during chemical mechanical polishing:Effect of polishing pad surface chemistry. Colloid Surf A-Physicochem Eng Asp, 2011, 388:21 doi: 10.1016/j.colsurfa.2011.07.039
[10]
Yoon S Y, Lee J H. A study on optimized conditioner for soft pad in Cu barrier removal. ECS Trans, 2011, 34:597 http://ecst.ecsdl.org/content/34/1/597
[11]
Wang L Y, Song Z T, Zhong M, et al. Mechanism of Ge2Sb2Te5 chemical mechanical polishing. Appl Surf Sci, 2012, 258:5185 doi: 10.1016/j.apsusc.2012.02.001
[12]
He A D, Wang L Y, Song Z T, et al. Amorphous Ge2Sb2Te5 chemical mechanical planarization using (NH4)2S2O8 or H2O2 as oxidizer in acidic slurry. ECS J Solid-State Sci Technol, 2012, 1:179 doi: 10.1149/2.014204jss
[13]
Hooper B J, Byrne G, Galligan S. Pad conditioning in chemical mechanical polishing. J Mater Process Technol, 2002, 123:107 doi: 10.1016/S0924-0136(01)01137-2
[14]
McGrath J, Davis C. Polishing pad surface characterization in chemical mechanical planarization. J Mater Process Technol, 2004, 153/154:666 https://escholarship.org/uc/item/326856vn
[15]
Bajaj R, Desai M, Jairath R, et al. Effect of polishing pad material properties on chemical mechanical polishing (CMP) processes. Mater Res Soc Symp Proc, 1994, 337:637 doi: 10.1557/PROC-337-637
[16]
Moon Y, Park I, Dornfeld D A. Investigation of the relationship between Preston's coefficient and friction coefficient in chemical mechanical polishing (CMP) of silicon. Proc Am Soc Precision Eng (ASPE), ASPE Spring Topical Conference on Silicon, Monterey, 1998, 4:78
[17]
Moon Y, Dornfield D A. Mechanical properties and relationship to process performance of the polishing pad in chemical mechanical polishing (CMP) of silicon. Proc Am Soc Precision Eng (ASPE), ASPE Spring Topical Conference on Silicon, Monterey, 1998, 4:83
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2575 Times PDF downloads: 18 Times Cited by: 0 Times

    History

    Received: 09 December 2012 Revised: 10 January 2013 Online: Published: 01 July 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Aodong He, Bo Liu, Zhitang Song, Yegang Lü, Juntao Li, Weili Liu, Songlin Feng, Guanping Wu. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad[J]. Journal of Semiconductors, 2013, 34(7): 076002. doi: 10.1088/1674-4926/34/7/076002 A D He, B Liu, Z T Song, Y G Lü, J T Li, W L Liu, S L Feng, G P Wu. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad[J]. J. Semicond., 2013, 34(7): 076002. doi:  10.1088/1674-4926/34/7/076002.Export: BibTex EndNote
      Citation:
      Aodong He, Bo Liu, Zhitang Song, Yegang Lü, Juntao Li, Weili Liu, Songlin Feng, Guanping Wu. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad[J]. Journal of Semiconductors, 2013, 34(7): 076002. doi: 10.1088/1674-4926/34/7/076002

      A D He, B Liu, Z T Song, Y G Lü, J T Li, W L Liu, S L Feng, G P Wu. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad[J]. J. Semicond., 2013, 34(7): 076002. doi:  10.1088/1674-4926/34/7/076002.
      Export: BibTex EndNote

      Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad

      doi: 10.1088/1674-4926/34/7/076002
      Funds:

      the National Natural Science Foundation of China 61076121

      the National Natural Science Foundation of China 60906004

      the National Key Basic Research Program of China 2011CB9328004

      the National Natural Science Foundation of China 61106001

      the Science and Technology Council of Shanghai 11QA1407800

      the National Natural Science Foundation of China 61006087

      the Chinese Academy of Sciences 20110490761

      the Science and Technology Council of Shanghai 12nm0503701

      the National Natural Science Foundation of China 61176122

      the National Key Basic Research Program of China 2010CB934300

      the National Key Basic Research Program of China 2010CB934300

      the National Natural Science Foundation of China 60906003

      the National Integrated Circuit Research Program of China 2009ZX02023-003

      Project supported by the National Key Basic Research Program of China (Nos. 2010CB934300, 2011CBA00607, 2011CB9328004), the National Integrated Circuit Research Program of China (No. 2009ZX02023-003), the National Natural Science Foundation of China (Nos. 60906004, 60906003, 61006087, 61076121, 61176122, 61106001), the Science and Technology Council of Shanghai (Nos. 11DZ2261000, 11QA1407800, 12nm0503701), and the Chinese Academy of Sciences (No. 20110490761)

      the Science and Technology Council of Shanghai 11DZ2261000

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return