SEMICONDUCTOR INTEGRATED CIRCUITS

A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS

Jia Cao, Zhiqun Li, Qin Li, Liang Chen, Meng Zhang, Chenjian Wu, Chong Wang and Zhigong Wang

+ Author Affiliations

 Corresponding author: Cao Jia, Email:caojia.seu@gmail.com

PDF

Abstract: This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology. A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain. Incorporating an input inductor and a gate-inductive gain-peaking inductor, the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure. The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB. Under 1.2 V supply voltage, the proposed IF amplifier consumes 42 mW DC power. The chip die including pads takes up 0.53 mm2, while the active area is only 0.022 mm2.

Key words: CMOSIF amplifierhigh gain, low noise amplifierwidebandpeaking techniquecascading amplifier



[1]
[2]
Lopez-Fernandez I, Daniel J, Puyol G. Development of cryogenic IF low-noise 4-12 GHz amplifiers for ALMA radio astronomy receivers. IEEE MTT-S Int Microw Symp Dig, 2006:1907 http://ieeexplore.ieee.org/document/4015330/keywords
[3]
Borremans J, Wambacq P, Soens C. Low-area active-feedback low-noise amplifier design in scaled digital CMOS. IEEE J Solid-State Circuits, 2008, 43(11):2022 http://ieeexplore.ieee.org/document/4685422/keywords
[4]
Okushima M, Borremans J, Linten D, et al. A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS. IEEE Radio Freq Integr Circuits Symp, 2009:295 http://ieeexplore.ieee.org/document/5135543/
[5]
Chen W H, Liu G. A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J Solid-State Circuits, 2008, 43(5):1164 doi: 10.1109/JSSC.2008.920335
[6]
Blaakmeer S C, Klumperink E A M. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid-State Circuits, 2008, 43(6):1341 doi: 10.1109/JSSC.2008.922736
[7]
Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5):745 doi: 10.1109/4.568846
[8]
Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed. Communications Engineer, 2004
[9]
Chen H K, Lin Y S. Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π -match input network. IEEE Trans Microw Theory Tech, 2010, 58(8):2092 doi: 10.1109/TMTT.2010.2052406
[10]
Chen M, Lin J. A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS. IEEE Microw Wireless Compon Lett, 2009, 19(5):323 doi: 10.1109/LMWC.2009.2017608
[11]
Chang P Y, Hsu S S H. A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS. IEEE Trans Microw Theory Tech, 2010, 58(10):2575
[12]
Sapone G, Palmisano G. A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Trans Microw Theory Tech, 2011, 59(3):678 doi: 10.1109/TMTT.2010.2090357
[13]
Hsieh H H, Lu L H. A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS. IEEE Trans Microw Theory Tech, 2009, 57(8):1895 doi: 10.1109/TMTT.2009.2025418
[14]
Lin Y S, Chen C Z, Yang H Y, et al. Analysis anddesign of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Trans Microw Theory Tech, 2010, 58(2):287 doi: 10.1109/TMTT.2009.2037863
[15]
El-Gabaly A M, Saavedra C E. Broadband low-noise amplifier with fast power switching for 3.1-10.6-GHz ultra-wideband applications. IEEE Trans Microw Theory Tech, 2011, 59(12):3146 doi: 10.1109/TMTT.2011.2169277
[16]
Heydari P. Design and analysis of a performance-optimized CMOS UWB distributed LNA. IEEE J Solid-State Circuits, 2007, 42(9):1892 doi: 10.1109/JSSC.2007.903046
[17]
He K C, Li M T, Li C M, et al. Parallel-RC feedback low-noise amplifier for UWB applications. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2010, 57(8):582 doi: 10.1109/TCSII.2010.2050943
[18]
Lai Q T, Mao J F. A 0.5-11 GHz CMOS low noise amplifier using dual-channel shunt technique. IEEE Microw Wireless Compon Lett, 2010, 19(5):280 http://ieeexplore.ieee.org/document/5443550/?tp=&arnumber=5443550&queryText%3D(dual-channel%20cmos%20)
[19]
Pepe D, Zito D. 22.7-dB gain-19.7-dBm ICP1dB UWB CMOS LNA. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2009, 56(9):689
[20]
Fang C, Law C L, Hwang J. A 3.1-10.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC power. IEEE Microw Wireless Compon Lett, 2007, 17(4):295 doi: 10.1109/LMWC.2007.892984
[21]
Chen K H, Lu J H, Chen B J, et al. An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2007, 54(3):217 doi: 10.1109/TCSII.2006.886880
Fig. 1.  Block diagram of the front end system.

Fig. 2.  (a) Block diagram of the proposed IF amplifier. (b) Frequency response of every stage.

Fig. 3.  Schematic of the classical low noise topologies with adequate input matching. (a) Common gate topology. (b) Common source topology with source degeneration inductor. (c) Common source topology with a feedback cell.

Fig. 4.  (a) Schematic (b) small-signal equivalent circuit of the active shunt feedback amplifier.

Fig. 5.  Schematic of the proposed input stage with the additional input series inductor $L_1$ and series peaking inductor $L_5$.

Fig. 6.  Schematic of the proposed input stage with the additional input series inductor $L_1$ and series peaking inductor $L_5$.

Fig. 7.  (a) Simulated NF versus frequency both with and without $L_{1}$. (b) Simulated NF versus the value of ideal $L_{1}$.

Fig. 8.  Simulated gain and NF versus $g_{\rm m3}$.

Fig. 9.  (a) Common source topology with series peaking inductor $L_{1}$. (b) Common source topology with shunt peaking inductor $L_{2}$. (c) Common source topology with center tapped shunt peaking inductor $L_{3}$.

Fig. 10.  Relationship between the peak value of gain and the reactance of the series resonant tank.

Fig. 11.  (a) Equivalent circuit of the center-tapped inductor. (b) Group delay versus frequency with different coupling factor $k$. (c) Voltage gain versus frequency with different coupling factor $k$.

Fig. 12.  Comparison of the improvement of the series peaking inductor $L_{2}$ and the shunt peaking inductor $L_{3}$.

Fig. 13.  Schematic of the proposed IF amplifier.

Fig. 14.  Verification of the EM simulation using HFSS.

Fig. 15.  Schematic and small-signal equivalent circuit of the output stage.

Fig. 16.  Voltage gain contributed by every single stage.

Fig. 17.  The chip micrograph of the proposed IF amplifier.

Fig. 18.  Measured S-parameter versus frequency of the proposed IF amplifier.

Fig. 19.  Measured NF versus frequency of the proposed IF amplifier.

Fig. 20.  Measured $P_{\rm in, \, 1 dB}$ and IIP3 versus frequency of the IF amplifier.

Fig. 21.  Measured output power and gain versus the input power.

Table 1.   Performance Summary and Comparison with Prior Wideband Amplifiers.

[1]
[2]
Lopez-Fernandez I, Daniel J, Puyol G. Development of cryogenic IF low-noise 4-12 GHz amplifiers for ALMA radio astronomy receivers. IEEE MTT-S Int Microw Symp Dig, 2006:1907 http://ieeexplore.ieee.org/document/4015330/keywords
[3]
Borremans J, Wambacq P, Soens C. Low-area active-feedback low-noise amplifier design in scaled digital CMOS. IEEE J Solid-State Circuits, 2008, 43(11):2022 http://ieeexplore.ieee.org/document/4685422/keywords
[4]
Okushima M, Borremans J, Linten D, et al. A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS. IEEE Radio Freq Integr Circuits Symp, 2009:295 http://ieeexplore.ieee.org/document/5135543/
[5]
Chen W H, Liu G. A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J Solid-State Circuits, 2008, 43(5):1164 doi: 10.1109/JSSC.2008.920335
[6]
Blaakmeer S C, Klumperink E A M. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid-State Circuits, 2008, 43(6):1341 doi: 10.1109/JSSC.2008.922736
[7]
Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5):745 doi: 10.1109/4.568846
[8]
Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed. Communications Engineer, 2004
[9]
Chen H K, Lin Y S. Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π -match input network. IEEE Trans Microw Theory Tech, 2010, 58(8):2092 doi: 10.1109/TMTT.2010.2052406
[10]
Chen M, Lin J. A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS. IEEE Microw Wireless Compon Lett, 2009, 19(5):323 doi: 10.1109/LMWC.2009.2017608
[11]
Chang P Y, Hsu S S H. A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS. IEEE Trans Microw Theory Tech, 2010, 58(10):2575
[12]
Sapone G, Palmisano G. A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Trans Microw Theory Tech, 2011, 59(3):678 doi: 10.1109/TMTT.2010.2090357
[13]
Hsieh H H, Lu L H. A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS. IEEE Trans Microw Theory Tech, 2009, 57(8):1895 doi: 10.1109/TMTT.2009.2025418
[14]
Lin Y S, Chen C Z, Yang H Y, et al. Analysis anddesign of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Trans Microw Theory Tech, 2010, 58(2):287 doi: 10.1109/TMTT.2009.2037863
[15]
El-Gabaly A M, Saavedra C E. Broadband low-noise amplifier with fast power switching for 3.1-10.6-GHz ultra-wideband applications. IEEE Trans Microw Theory Tech, 2011, 59(12):3146 doi: 10.1109/TMTT.2011.2169277
[16]
Heydari P. Design and analysis of a performance-optimized CMOS UWB distributed LNA. IEEE J Solid-State Circuits, 2007, 42(9):1892 doi: 10.1109/JSSC.2007.903046
[17]
He K C, Li M T, Li C M, et al. Parallel-RC feedback low-noise amplifier for UWB applications. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2010, 57(8):582 doi: 10.1109/TCSII.2010.2050943
[18]
Lai Q T, Mao J F. A 0.5-11 GHz CMOS low noise amplifier using dual-channel shunt technique. IEEE Microw Wireless Compon Lett, 2010, 19(5):280 http://ieeexplore.ieee.org/document/5443550/?tp=&arnumber=5443550&queryText%3D(dual-channel%20cmos%20)
[19]
Pepe D, Zito D. 22.7-dB gain-19.7-dBm ICP1dB UWB CMOS LNA. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2009, 56(9):689
[20]
Fang C, Law C L, Hwang J. A 3.1-10.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC power. IEEE Microw Wireless Compon Lett, 2007, 17(4):295 doi: 10.1109/LMWC.2007.892984
[21]
Chen K H, Lu J H, Chen B J, et al. An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2007, 54(3):217 doi: 10.1109/TCSII.2006.886880
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2840 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 12 December 2012 Revised: 04 January 2013 Online: Published: 01 August 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jia Cao, Zhiqun Li, Qin Li, Liang Chen, Meng Zhang, Chenjian Wu, Chong Wang, Zhigong Wang. A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS[J]. Journal of Semiconductors, 2013, 34(8): 085010. doi: 10.1088/1674-4926/34/8/085010 J Cao, Z Q Li, Q Li, L Chen, M Zhang, C J Wu, C Wang, Z G Wang. A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS[J]. J. Semicond., 2013, 34(8): 085010. doi: 10.1088/1674-4926/34/8/085010.Export: BibTex EndNote
      Citation:
      Jia Cao, Zhiqun Li, Qin Li, Liang Chen, Meng Zhang, Chenjian Wu, Chong Wang, Zhigong Wang. A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS[J]. Journal of Semiconductors, 2013, 34(8): 085010. doi: 10.1088/1674-4926/34/8/085010

      J Cao, Z Q Li, Q Li, L Chen, M Zhang, C J Wu, C Wang, Z G Wang. A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS[J]. J. Semicond., 2013, 34(8): 085010. doi: 10.1088/1674-4926/34/8/085010.
      Export: BibTex EndNote

      A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS

      doi: 10.1088/1674-4926/34/8/085010
      Funds:

      Project supported by the National Basic Research Program of China (No. 2010CB327404) and the National Natural Science Foundation of China (No. 60901012)

      the National Natural Science Foundation of China 60901012

      the National Basic Research Program of China 2010CB327404

      More Information
      • Corresponding author: Cao Jia, Email:caojia.seu@gmail.com
      • Received Date: 2012-12-12
      • Revised Date: 2013-01-04
      • Published Date: 2013-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return