SEMICONDUCTOR INTEGRATED CIRCUITS

A sub-1-dB noise figure monolithic GNSS LNA

Renjie Zhou1, , Yong Xiang1, Hong Wang1, Yebing Gan2, 3, Min Qian2, 3, Chengyan Ma1, 2, 3 and Tianchun Ye1

+ Author Affiliations

 Corresponding author: Zhou Renjie, Email:zrjustc@gmail.com

PDF

Abstract: A monolithic integrated low noise amplifier (LNA) based on a SiGe HBT process for a global navigation satellite system (GNSS) is presented. An optimizing strategy of taking parasitic capacities at the input node into consideration is adopted and a method and design equations of monolithically designing the LC load and the output impedance matching circuit are introduced. The LNA simultaneously reaches excellent noise and input/output impedance matching. The measurement results show that the LNA gives an ultra-low noise figure of 0.97 dB, a power gain of 18.6 dB and a three-order input intermodulation point of -6 dBm at the frequency of 1.575 GHz. The chip consumes 5.4 mW from a 1.8 V source and occupies 600×650 μm2 die area.

Key words: LNAGNSSmonolithic integratedSiGe HBT



[1]
Poh J C H, Cheng P, Thrivikraman T K, et al. High gain, high linearity, L-band SiGe low noise amplifier with fully-integrated matching network. IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010:69 http://ieeexplore.ieee.org/abstract/document/5422953/
[2]
Huang H, Zhang H Y, Yang H, et al. A super-low-noise, high-gain MMIC LNA. Chinese Journal of Semiconductors, 2006, 27(12):2080 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=06070401&flag=1
[3]
Li Z Q, Chen L, Zhang H. Design and optimization of CMOS LNA with ESD protection for 2.4 GHz WSN application. Journal of Semiconductors, 2011, 32(10):105004 doi: 10.1088/1674-4926/32/10/105004
[4]
Lu Z Y, Xie H Y, Huo W J, et al. 0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA. Journal of Semiconductors, 2013, 34(2):025002 doi: 10.1088/1674-4926/34/2/025002
[5]
Wu C H, Tsai W C, Tan C G, et al. A GPS/Galileo SoC with adaptive in-band blocker cancellation in 65 nm CMOS. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011:462 http://ieeexplore.ieee.org/document/5746398/keywords
[6]
Bergervoet J, Leenaerts D M, De Jong G W, et al. A 1.95 GHz sub-1 dB NF, +40 dBm OIP3 WCDMA LNA module. IEEE J Solid-State Circuits, 2012, 47(7):1672 doi: 10.1109/JSSC.2012.2191673
[7]
Niehenke E C. The evolution of low noise devices and amplifiers. IEEE MTT-S International Microwave Symposium Digest (MTT), 2012:1 http://ieeexplore.ieee.org/document/6258248/authors
[8]
Sivonen P, Kangasmaa S, Parssinen A. Analysis of packaging effects and optimization in inductively degenerated common-emitter low-noise amplifiers. IEEE Trans Microw Theory Tech, 2003, 51(4):1220 doi: 10.1109/TMTT.2003.809633
[9]
Niu G. Noise in SiGe HBT RF technology:physics, modeling, and circuit implications. Proc IEEE, 2005, 93(9):1583 doi: 10.1109/JPROC.2005.852226
[10]
Li J, Li W Y. A fully integrated LNA for COMPASS receiver in SiGe-BiCMOS technology. IEEE MTT-S InternationalMicrowave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 2012:1
[11]
Kang B, Yu J, Shin H, et al. Design and analysis of a cascode bipolar low-noise amplifier with capacitive shunt feedback under power-constraint. IEEE Trans Microw Theory Tech, 2011, 59(6):1539 doi: 10.1109/TMTT.2011.2136355
Fig. 1.  (a) LNA topology and (b) simplified small signal equivalent circuit

Fig. 2.  NF$_{\rm min-HBT}$ versus $J_{\rm c}$

Fig. 3.  NF versus N

Fig. 4.  Estimated parasitic capacitance on PCB

Fig. 5.  (a) LC network and output impedance matching circuit and (b) its small signal equivalent circuit

Fig. 6.  Microphoto of the LNA

Fig. 7.  Measured S parameters of the LNA

Fig. 8.  Measured noise figure of the LNA

Fig. 9.  Measured IIP3 of the LNA

Table 1.   Main design parameters

Table 2.   Performance summary and comparison

[1]
Poh J C H, Cheng P, Thrivikraman T K, et al. High gain, high linearity, L-band SiGe low noise amplifier with fully-integrated matching network. IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010:69 http://ieeexplore.ieee.org/abstract/document/5422953/
[2]
Huang H, Zhang H Y, Yang H, et al. A super-low-noise, high-gain MMIC LNA. Chinese Journal of Semiconductors, 2006, 27(12):2080 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=06070401&flag=1
[3]
Li Z Q, Chen L, Zhang H. Design and optimization of CMOS LNA with ESD protection for 2.4 GHz WSN application. Journal of Semiconductors, 2011, 32(10):105004 doi: 10.1088/1674-4926/32/10/105004
[4]
Lu Z Y, Xie H Y, Huo W J, et al. 0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA. Journal of Semiconductors, 2013, 34(2):025002 doi: 10.1088/1674-4926/34/2/025002
[5]
Wu C H, Tsai W C, Tan C G, et al. A GPS/Galileo SoC with adaptive in-band blocker cancellation in 65 nm CMOS. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011:462 http://ieeexplore.ieee.org/document/5746398/keywords
[6]
Bergervoet J, Leenaerts D M, De Jong G W, et al. A 1.95 GHz sub-1 dB NF, +40 dBm OIP3 WCDMA LNA module. IEEE J Solid-State Circuits, 2012, 47(7):1672 doi: 10.1109/JSSC.2012.2191673
[7]
Niehenke E C. The evolution of low noise devices and amplifiers. IEEE MTT-S International Microwave Symposium Digest (MTT), 2012:1 http://ieeexplore.ieee.org/document/6258248/authors
[8]
Sivonen P, Kangasmaa S, Parssinen A. Analysis of packaging effects and optimization in inductively degenerated common-emitter low-noise amplifiers. IEEE Trans Microw Theory Tech, 2003, 51(4):1220 doi: 10.1109/TMTT.2003.809633
[9]
Niu G. Noise in SiGe HBT RF technology:physics, modeling, and circuit implications. Proc IEEE, 2005, 93(9):1583 doi: 10.1109/JPROC.2005.852226
[10]
Li J, Li W Y. A fully integrated LNA for COMPASS receiver in SiGe-BiCMOS technology. IEEE MTT-S InternationalMicrowave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 2012:1
[11]
Kang B, Yu J, Shin H, et al. Design and analysis of a cascode bipolar low-noise amplifier with capacitive shunt feedback under power-constraint. IEEE Trans Microw Theory Tech, 2011, 59(6):1539 doi: 10.1109/TMTT.2011.2136355
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2942 Times PDF downloads: 20 Times Cited by: 0 Times

    History

    Received: 01 February 2013 Revised: 16 April 2013 Online: Published: 01 September 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Renjie Zhou, Yong Xiang, Hong Wang, Yebing Gan, Min Qian, Chengyan Ma, Tianchun Ye. A sub-1-dB noise figure monolithic GNSS LNA[J]. Journal of Semiconductors, 2013, 34(9): 095010. doi: 10.1088/1674-4926/34/9/095010 R J Zhou, Y Xiang, H Wang, Y B Gan, M Qian, C Y Ma, T C Ye. A sub-1-dB noise figure monolithic GNSS LNA[J]. J. Semicond., 2013, 34(9): 095010. doi: 10.1088/1674-4926/34/9/095010.Export: BibTex EndNote
      Citation:
      Renjie Zhou, Yong Xiang, Hong Wang, Yebing Gan, Min Qian, Chengyan Ma, Tianchun Ye. A sub-1-dB noise figure monolithic GNSS LNA[J]. Journal of Semiconductors, 2013, 34(9): 095010. doi: 10.1088/1674-4926/34/9/095010

      R J Zhou, Y Xiang, H Wang, Y B Gan, M Qian, C Y Ma, T C Ye. A sub-1-dB noise figure monolithic GNSS LNA[J]. J. Semicond., 2013, 34(9): 095010. doi: 10.1088/1674-4926/34/9/095010.
      Export: BibTex EndNote

      A sub-1-dB noise figure monolithic GNSS LNA

      doi: 10.1088/1674-4926/34/9/095010
      More Information
      • Corresponding author: Zhou Renjie, Email:zrjustc@gmail.com
      • Received Date: 2013-02-01
      • Revised Date: 2013-04-16
      • Published Date: 2013-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return