SEMICONDUCTOR MATERIALS

Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations

Zongyan Zhao, Dacheng Zhou and Juan Yi

+ Author Affiliations

 Corresponding author: Zhao Zongyan, Email:zzy@kmust.edu.cn

PDF

Abstract: 3d transition metals doped CuGaS2 are considered as possible absorbing material candidates for intermediated band thin film solar cells. The electronic structure and optical properties of 3d transition metals doped CuGaS2 are investigated by using density functional theory calculations with the GGA + U method in the present work. The doping with 3d transition metals does not obviously change the crystal structure, band gap, and optical absorption edge of the CuGaS2 host. However, in the case of CuGa1-xTMxS2 (TM=Ti, V, Cr, Fe, and Ni), there is at least one distinct isolated impurity energy level in the band gap, and the optical absorption is enhanced in the ultraviolet-light region. Therefore, these materials are ideal absorber material candidates for intermediated band thin film solar cells. The calculated results are very well consistent with experimental observations, and could better explain them.

Key words: chalcogenidesDFT calculationsdefectselectrical structureoptical properties



[1]
Soren D, Ib C. Solar-fuel generation:towards practical implementation. Nature Mater, 2012, 11(2):100 doi: 10.1038/nmat3233
[2]
Blankenship R E, Tiede D M, Barber J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 2011, 332(6031):805 doi: 10.1126/science.1200165
[3]
Morton O. Solar energy:a new day dawning?:silicon valley sunrise. Nature, 2006, 443(7107):19 doi: 10.1038/443019a
[4]
Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25(5):676 doi: 10.1063/1.1721711
[5]
Conibeer G. Third-generation photovoltaics. Mater Today, 2007, 10(11):42 doi: 10.1016/S1369-7021(07)70278-X
[6]
Green M A. Third generation photovoltaics:advanced solar energy conversion. Berlin Heidelberg:Springer-Verlag, 2003
[7]
Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physl Rev Lett, 1997, 78(26):5014 doi: 10.1103/PhysRevLett.78.5014
[8]
López N, Reichertz L A, Yu K M, et al. Engineering the electronic band structure for multiband solar cells. Phys Rev Lett, 2011, 106(2):028701 doi: 10.1103/PhysRevLett.106.028701
[9]
Palacios P, Sanchez K, Wahnon P, et al. Characterization by ab initio calculations of an intermediate band material based on chalcopyrite semiconductors substituted by several transition metals. J Solar Energy Eng, 2007, 129(3):314 doi: 10.1115/1.2735345
[10]
Marti A, Marron D F, Luque A. Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials. J Appl Phys, 2008, 103(7):073706 doi: 10.1063/1.2901213
[11]
Marsen B, Klemz S, Unold T, et al. Investigation of the sub-bandgap photoresponse in CuGaS2:Fe for intermediate band solar cells. Progress in Photovoltaics:Research and Applications, 2012, 20(6):625 doi: 10.1002/pip.1197
[12]
Tablero C, Fuertes M D. Analysis of the electronic structure of modified CuGaS2 with selected substitutional impurities:prospects for intermediate-band thin-film solar cells based on Cu-containing chalcopyrites. J Phys Chem C, 2010, 114(6):2756 doi: 10.1021/jp909895q
[13]
Teranishi T, Sato K, Kondo K. Optical properties of a magnetic semiconductor:chalcopyrite CuFeS2:I. absorption spectra of CuFeS2 and Fe-doped CuAlS2 and CuGaS2. J Phys Soc Japan, 1974, 36:1618 doi: 10.1143/JPSJ.36.1618
[14]
Von Bardeleben H J, Goltzene A, Meyer B, et al. Effects of iron content and stoichiometry on the coloration of CuGaS2. Phys Status Solidi A, 1978, 48(2):K145
[15]
Sato K, Teranishi T. Effect of delocalization of d-electrons on the optical reflectivity spectra of CuGa1-xFexS2 and CuAl1-xFexS2 systems. Jpn J Appl Phys, 1980, 19S3(Supplement 19-3):101
[16]
Marsen B, Klemz S, Landi G, et al. Phases in copper-gallium-metal-sulfide films (metal=titanium, iron, or tin). Thin Solid Films, 2011, 519(21):7284 doi: 10.1016/j.tsf.2011.01.137
[17]
Seminóvski Y, Palacios P, Wahnón P. Intermediate band position modulated by Zn addition in Ti doped CuGaS2. Thin Solid Films, 2011, 519(21):7517 doi: 10.1016/j.tsf.2010.12.136
[18]
Seminóvski Y, Palacios P, Conesa J C, et al. Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material. Computational and Theoretical Chemistry, 2011, 975(1-3):134 doi: 10.1016/j.comptc.2010.12.018
[19]
Palacios P, Aguilera I, Wahnon P, et al. Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials. J Phys Chem C, 2008, 112(25):9525 doi: 10.1021/jp0774185
[20]
Palacios P, Aguilera I, Wahnón P. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials. Thin Solid Films, 2008, 516(20):7070 doi: 10.1016/j.tsf.2007.12.062
[21]
Aguilera I, Palacios P, Wahnón P. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles. Thin Solid Films, 2008, 516(20):7055 doi: 10.1016/j.tsf.2007.12.085
[22]
Palacios P, Sánchez K, Conesa J C, et al. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds. Thin Solid Films, 2007, 515(15):6280 doi: 10.1016/j.tsf.2006.12.170
[23]
Zhao Y J, Zunger A. Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2. Physl Rev B, 2004, 69(10):104422 doi: 10.1103/PhysRevB.69.104422
[24]
Zhao Y J, Zunger A. Site preference for Mn substitution in spintronic CuMX2VI chalcopyrite semiconductors. Phys Rev B, 2004, 69(7):075208 doi: 10.1103/PhysRevB.69.075208
[25]
Picozzi S, Zhao Y J, Freeman A J, et al. Mn-doped CuGaS2 chalcopyrites:an ab initio study of ferromagnetic semiconductors. Phys Rev B, 2002, 66(20):205206 doi: 10.1103/PhysRevB.66.205206
[26]
Kaufmann U. Electronic structure of Ni+ in IB-Ⅲ-VI2 chalcopyrite semiconductors. Physl Rev B, 1975, 11(7):2478 doi: 10.1103/PhysRevB.11.2478
[27]
Lin Guijiang, Wu Jyhchiarng, Huang Meichun. Theoretical modeling of the interface recombination effect on the performance of Ⅲ-V tandem solar cells. Journal of Semiconductors, 2010, 31(8):082004 doi: 10.1088/1674-4926/31/8/082004
[28]
Gao Pan, Zhang Xuejun, Zhou Wenfang, et al. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium. Journal of Semiconductors, 2010, 31(3):032001 doi: 10.1088/1674-4926/31/3/032001
[29]
Li Lezhong, Yang Weiqing, Ding Yingchun, et al. First principle study of the electronic structure of hafnium-doped anatase TiO2. Journal of Semiconductors, 2012, 33(1):012002 doi: 10.1088/1674-4926/33/1/012002
[30]
Zheng Wenli, Li Tinghui. Compositional dependence of Raman frequencies in SixGe1-x alloys. Journal of Semiconductors, 2012, 33(11):112001 doi: 10.1088/1674-4926/33/11/112001
[31]
Si Panpan, Su Xiyu, Hou Qinying, et al. First-principles calculation of the electronic band of ZnO doped with C. Journal of Semiconductors, 2009, 30(5):052001 doi: 10.1088/1674-4926/30/5/052001
[32]
Shih B Cg, Zhang Y, Zhang W, et al. Screened Coulomb interaction of localized electrons in solids from first principles. Physl Rev B, 2012, 85(4):045132 doi: 10.1103/PhysRevB.85.045132
[33]
Xu B, Li X, Qin Z, et al. Electronic and optical properties of CuGaS2:first-principles calculations. Physica B:Condensed Matter, 2011, 406(4):946 doi: 10.1016/j.physb.2010.12.034
[34]
Romero A H, Cardona M, Kremer R K, et al. Electronic and phononic properties of the chalcopyrite CuGaS2. Phys Rev B, 2011, 83(19):195208 doi: 10.1103/PhysRevB.83.195208
[35]
Aguilera I, Vidal J, Wahnón P, et al. First-principles study of the band structure and optical absorption of CuGaS2. Phys Rev B, 2011, 84(8):085145 doi: 10.1103/PhysRevB.84.085145
[36]
Bailey C L, Liborio L, Mallia G, et al. Defect physics of CuGaS2. Physl Rev B, 2010, 81(20):205214 doi: 10.1103/PhysRevB.81.205214
[37]
Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 2005, 220(5/6):567
[38]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18):3865 doi: 10.1103/PhysRevLett.77.3865
[39]
Cococcioni M, de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B, 2005, 71(3):035105 doi: 10.1103/PhysRevB.71.035105
[40]
Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators:Hubbard U instead of Stoner I. Phys Rev B, 1991, 44(3):943 doi: 10.1103/PhysRevB.44.943
[41]
Pfrommer B G, Câté M, Louie S G, et al. Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics, 1997, 131(1):233 doi: 10.1006/jcph.1996.5612
[42]
Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities:applications to Ⅲ-nitrides. J Appl Phys, 2004, 95(8):3851 doi: 10.1063/1.1682673
[43]
Tell B, Shay J L, Kasper H M. Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2. Phys Rev B, 1971, 4(8):2463 doi: 10.1103/PhysRevB.4.2463
[44]
Bellabarba C, González J, Rincón C. Optical-absorption spectrum near the exciton band edge in CuGaS2 at 5 K. Phys Rev B, 1996, 53(12):7792 doi: 10.1103/PhysRevB.53.7792
[45]
González J, Moya E, Chervin J C. Anharmonic effects in light scattering due to optical phonons in CuGaS2. Phys Rev B, 1996, 54(7):4707 doi: 10.1103/PhysRevB.54.4707
Fig. 1.  (Color online) (a) Conventional unit cell of CuGaS$_{2}$ in a chalcopyrite structure, and (b) the supercell model of CuGa$_{1-x}$TM$_{x}$S$_{2}$ considered in the present work.

Fig. 2.  (a) The calculated band structure of pure CuGaS$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of pure CuGaS$_{2}$.

Fig. 3.  (a) The calculated band structure of CuGa$_{1-x}$Ti$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Ti$_{x}$S$_{2}$.

Fig. 4.  (a) The calculated band structure of CuGa$_{1-x}$V$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$V$_{x}$S$_{2}$.

Fig. 5.  (a) The calculated band structure of CuGa$_{1-x}$Cr$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Cr$_{x}$S$_{2}$.

Fig. 6.  (a) The calculated band structure of CuGa$_{1-x}$Mn$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Mn$_{x}$S$_{2}$.

Fig. 7.  (a) The calculated band structure of CuGa$_{1-x}$Fe$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Fe$_{x}$S$_{2}$.

Fig. 8.  (a) The calculated band structure of CuGa$_{1-x}$Co$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Co$_{x}$S$_{2}$.

Fig. 9.  (a) The calculated band structure of CuGa$_{1-x}$Ni$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Ni$_{x}$S$_{2}$.

Fig. 10.  (a) The calculated band structure of CuGa$_{1-x}$Cu$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Cu$_{x}$S$_{2}$.

Fig. 11.  (a) The calculated band structure of CuGa$_{1-x}$Zn$_{x}$S$_{2}$. (b) The calculated density of states and (c) the corresponding enlarged plot near the band gap of CuGa$_{1-x}$Zn$_{x}$S$_{2}$.

Fig. 12.  The calculated absorption coefficient spectra of CuGa$_{1-x}$TM$_{x}$S$_{2}$, and respective comparison with that of pure CuGaS$_{2}$.

Table 1.   Calculated lattice distortion and impurity formation energy of CuGa$_{1-x}$TM$_{x}$S$_{2}$.

[1]
Soren D, Ib C. Solar-fuel generation:towards practical implementation. Nature Mater, 2012, 11(2):100 doi: 10.1038/nmat3233
[2]
Blankenship R E, Tiede D M, Barber J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 2011, 332(6031):805 doi: 10.1126/science.1200165
[3]
Morton O. Solar energy:a new day dawning?:silicon valley sunrise. Nature, 2006, 443(7107):19 doi: 10.1038/443019a
[4]
Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25(5):676 doi: 10.1063/1.1721711
[5]
Conibeer G. Third-generation photovoltaics. Mater Today, 2007, 10(11):42 doi: 10.1016/S1369-7021(07)70278-X
[6]
Green M A. Third generation photovoltaics:advanced solar energy conversion. Berlin Heidelberg:Springer-Verlag, 2003
[7]
Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physl Rev Lett, 1997, 78(26):5014 doi: 10.1103/PhysRevLett.78.5014
[8]
López N, Reichertz L A, Yu K M, et al. Engineering the electronic band structure for multiband solar cells. Phys Rev Lett, 2011, 106(2):028701 doi: 10.1103/PhysRevLett.106.028701
[9]
Palacios P, Sanchez K, Wahnon P, et al. Characterization by ab initio calculations of an intermediate band material based on chalcopyrite semiconductors substituted by several transition metals. J Solar Energy Eng, 2007, 129(3):314 doi: 10.1115/1.2735345
[10]
Marti A, Marron D F, Luque A. Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials. J Appl Phys, 2008, 103(7):073706 doi: 10.1063/1.2901213
[11]
Marsen B, Klemz S, Unold T, et al. Investigation of the sub-bandgap photoresponse in CuGaS2:Fe for intermediate band solar cells. Progress in Photovoltaics:Research and Applications, 2012, 20(6):625 doi: 10.1002/pip.1197
[12]
Tablero C, Fuertes M D. Analysis of the electronic structure of modified CuGaS2 with selected substitutional impurities:prospects for intermediate-band thin-film solar cells based on Cu-containing chalcopyrites. J Phys Chem C, 2010, 114(6):2756 doi: 10.1021/jp909895q
[13]
Teranishi T, Sato K, Kondo K. Optical properties of a magnetic semiconductor:chalcopyrite CuFeS2:I. absorption spectra of CuFeS2 and Fe-doped CuAlS2 and CuGaS2. J Phys Soc Japan, 1974, 36:1618 doi: 10.1143/JPSJ.36.1618
[14]
Von Bardeleben H J, Goltzene A, Meyer B, et al. Effects of iron content and stoichiometry on the coloration of CuGaS2. Phys Status Solidi A, 1978, 48(2):K145
[15]
Sato K, Teranishi T. Effect of delocalization of d-electrons on the optical reflectivity spectra of CuGa1-xFexS2 and CuAl1-xFexS2 systems. Jpn J Appl Phys, 1980, 19S3(Supplement 19-3):101
[16]
Marsen B, Klemz S, Landi G, et al. Phases in copper-gallium-metal-sulfide films (metal=titanium, iron, or tin). Thin Solid Films, 2011, 519(21):7284 doi: 10.1016/j.tsf.2011.01.137
[17]
Seminóvski Y, Palacios P, Wahnón P. Intermediate band position modulated by Zn addition in Ti doped CuGaS2. Thin Solid Films, 2011, 519(21):7517 doi: 10.1016/j.tsf.2010.12.136
[18]
Seminóvski Y, Palacios P, Conesa J C, et al. Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material. Computational and Theoretical Chemistry, 2011, 975(1-3):134 doi: 10.1016/j.comptc.2010.12.018
[19]
Palacios P, Aguilera I, Wahnon P, et al. Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials. J Phys Chem C, 2008, 112(25):9525 doi: 10.1021/jp0774185
[20]
Palacios P, Aguilera I, Wahnón P. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials. Thin Solid Films, 2008, 516(20):7070 doi: 10.1016/j.tsf.2007.12.062
[21]
Aguilera I, Palacios P, Wahnón P. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles. Thin Solid Films, 2008, 516(20):7055 doi: 10.1016/j.tsf.2007.12.085
[22]
Palacios P, Sánchez K, Conesa J C, et al. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds. Thin Solid Films, 2007, 515(15):6280 doi: 10.1016/j.tsf.2006.12.170
[23]
Zhao Y J, Zunger A. Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2. Physl Rev B, 2004, 69(10):104422 doi: 10.1103/PhysRevB.69.104422
[24]
Zhao Y J, Zunger A. Site preference for Mn substitution in spintronic CuMX2VI chalcopyrite semiconductors. Phys Rev B, 2004, 69(7):075208 doi: 10.1103/PhysRevB.69.075208
[25]
Picozzi S, Zhao Y J, Freeman A J, et al. Mn-doped CuGaS2 chalcopyrites:an ab initio study of ferromagnetic semiconductors. Phys Rev B, 2002, 66(20):205206 doi: 10.1103/PhysRevB.66.205206
[26]
Kaufmann U. Electronic structure of Ni+ in IB-Ⅲ-VI2 chalcopyrite semiconductors. Physl Rev B, 1975, 11(7):2478 doi: 10.1103/PhysRevB.11.2478
[27]
Lin Guijiang, Wu Jyhchiarng, Huang Meichun. Theoretical modeling of the interface recombination effect on the performance of Ⅲ-V tandem solar cells. Journal of Semiconductors, 2010, 31(8):082004 doi: 10.1088/1674-4926/31/8/082004
[28]
Gao Pan, Zhang Xuejun, Zhou Wenfang, et al. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium. Journal of Semiconductors, 2010, 31(3):032001 doi: 10.1088/1674-4926/31/3/032001
[29]
Li Lezhong, Yang Weiqing, Ding Yingchun, et al. First principle study of the electronic structure of hafnium-doped anatase TiO2. Journal of Semiconductors, 2012, 33(1):012002 doi: 10.1088/1674-4926/33/1/012002
[30]
Zheng Wenli, Li Tinghui. Compositional dependence of Raman frequencies in SixGe1-x alloys. Journal of Semiconductors, 2012, 33(11):112001 doi: 10.1088/1674-4926/33/11/112001
[31]
Si Panpan, Su Xiyu, Hou Qinying, et al. First-principles calculation of the electronic band of ZnO doped with C. Journal of Semiconductors, 2009, 30(5):052001 doi: 10.1088/1674-4926/30/5/052001
[32]
Shih B Cg, Zhang Y, Zhang W, et al. Screened Coulomb interaction of localized electrons in solids from first principles. Physl Rev B, 2012, 85(4):045132 doi: 10.1103/PhysRevB.85.045132
[33]
Xu B, Li X, Qin Z, et al. Electronic and optical properties of CuGaS2:first-principles calculations. Physica B:Condensed Matter, 2011, 406(4):946 doi: 10.1016/j.physb.2010.12.034
[34]
Romero A H, Cardona M, Kremer R K, et al. Electronic and phononic properties of the chalcopyrite CuGaS2. Phys Rev B, 2011, 83(19):195208 doi: 10.1103/PhysRevB.83.195208
[35]
Aguilera I, Vidal J, Wahnón P, et al. First-principles study of the band structure and optical absorption of CuGaS2. Phys Rev B, 2011, 84(8):085145 doi: 10.1103/PhysRevB.84.085145
[36]
Bailey C L, Liborio L, Mallia G, et al. Defect physics of CuGaS2. Physl Rev B, 2010, 81(20):205214 doi: 10.1103/PhysRevB.81.205214
[37]
Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 2005, 220(5/6):567
[38]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18):3865 doi: 10.1103/PhysRevLett.77.3865
[39]
Cococcioni M, de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B, 2005, 71(3):035105 doi: 10.1103/PhysRevB.71.035105
[40]
Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators:Hubbard U instead of Stoner I. Phys Rev B, 1991, 44(3):943 doi: 10.1103/PhysRevB.44.943
[41]
Pfrommer B G, Câté M, Louie S G, et al. Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics, 1997, 131(1):233 doi: 10.1006/jcph.1996.5612
[42]
Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities:applications to Ⅲ-nitrides. J Appl Phys, 2004, 95(8):3851 doi: 10.1063/1.1682673
[43]
Tell B, Shay J L, Kasper H M. Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2. Phys Rev B, 1971, 4(8):2463 doi: 10.1103/PhysRevB.4.2463
[44]
Bellabarba C, González J, Rincón C. Optical-absorption spectrum near the exciton band edge in CuGaS2 at 5 K. Phys Rev B, 1996, 53(12):7792 doi: 10.1103/PhysRevB.53.7792
[45]
González J, Moya E, Chervin J C. Anharmonic effects in light scattering due to optical phonons in CuGaS2. Phys Rev B, 1996, 54(7):4707 doi: 10.1103/PhysRevB.54.4707
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2809 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 30 May 2013 Revised: 04 July 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zongyan Zhao, Dacheng Zhou, Juan Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations[J]. Journal of Semiconductors, 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002 Z Y Zhao, D C Zhou, J Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations[J]. J. Semicond., 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002.Export: BibTex EndNote
      Citation:
      Zongyan Zhao, Dacheng Zhou, Juan Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations[J]. Journal of Semiconductors, 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002

      Z Y Zhao, D C Zhou, J Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations[J]. J. Semicond., 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002.
      Export: BibTex EndNote

      Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations

      doi: 10.1088/1674-4926/35/1/013002
      Funds:

      the Introduced Talents Foundation of Kunming University of Science and Technology 

      the National Natural Science Foundation of China 21263006

      the Science Research Foundation of Educational Commission of Yunnan Province of China 2012Y542

      Project supported by the National Natural Science Foundation of China (No. 21263006), the Science Research Foundation of Educational Commission of Yunnan Province of China (No. 2012Y542), and the Introduced Talents Foundation of Kunming University of Science and Technology

      More Information
      • Corresponding author: Zhao Zongyan, Email:zzy@kmust.edu.cn
      • Received Date: 2013-05-30
      • Revised Date: 2013-07-04
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return