SEMICONDUCTOR DEVICES

ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

Zhefeng Li and Xianye Luo

+ Author Affiliations

 Corresponding author: Li Zhefeng, Email:zhefeng@cqu.edu.cn

PDF

Abstract: This study explores a strategy of using the phosphonic acid derivative (11-((12-(anthracen-2-yl)dodecyl)oxy)-11-oxoundecyl) phosphonic acid (ADO-phosphonic acid) as self-assembled monolayers (SAMs) on a Si/SiO2 surface to induce the crystallization of rubrene in vacuum deposited thin film transistors, which showed a field-effect mobility as high as 0.18 cm2/(V·s). It is found that ADO-phosphonic acid SAMs play a unique role in modulating the morphology of rubrene to form a crystalline film in the thin-film transistors.

Key words: thin film transistorsself-assembled monolayerphosphonic acid derivative



[1]
Tang M L, Reichardt A D, Wei P, et al. Correlating carrier type with frontier molecular orbital energy levels in organic thin film transistors of functionalized acene derivatives. J Am Chem Soc, 2009, 131:5264 doi: 10.1021/ja809659b
[2]
Dodabalapur A. Semiconductor technology-negatively successful. Nature, 2005, 434:151 http://adsabs.harvard.edu/abs/2005Natur.434..151D
[3]
Sirringhaus H. Device physics of Solution-processed organic field-effect transistors. Adv Mater, 2005, 17:2411 doi: 10.1002/(ISSN)1521-4095
[4]
Roberts M E, LeMieux M C, Bao Z N. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano, 2009, 10:3287 doi: 10.1021/nn900808b?src=recsys&journalCode=ancac3
[5]
Li Z F, Du J, Tang Q, et al. Induced crystallization of rubrene in thin-film transistors. Adv Mater, 2010, 22:3242 doi: 10.1002/adma.201000786
[6]
Hwang S K, Bae I, Cho S M, et al. High performance multi-level non-volatile polymer memory with solution-blended ferroelectric polymer/high-k insulators for low voltage operation. Adv Funct Mater, 2013, 23:5484 doi: 10.1002/adfm.v23.44
[7]
Tsai T D, Chang J W, Wen T C, et al. Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements. Adv Funct Mater, 2013, 23:4206 doi: 10.1002/adfm.v23.34
[8]
Majewski L A, Schroeder R, Grell M. One volt organic transistor. Adv Mater, 2005, 17:192 doi: 10.1002/(ISSN)1521-4095
[9]
Zirkl M, Haase A, Fian A, et al. Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors. Adv Mater, 2007, 19:2241 doi: 10.1002/(ISSN)1521-4095
[10]
Lee B H, Ryu M K, Choi S Y, et al. Rapid vapor-phase fabrication of organic-inorganic hybrid superlattices with monolayer precision. J Am Chem Soc, 2007, 129:16034 doi: 10.1021/ja075664o
[11]
Park B, Cho S E, Kim Y, et al. Simultaneous study of exciton diffusion/dissociation and charge transport in a donor-acceptor bilayer:pentacene on a C60-terminated self-assembled monolayer. Adv Mater, 2013, 25:6453 doi: 10.1002/adma.v25.44
[12]
Ulman A. Formation and structure of self-assembled monolayers. Chem Rev, 1996, 96:1533 doi: 10.1021/cr9502357
[13]
Onclin S, Ravoo B J, Reinhoudt D N. Engineering silicon oxide surfaces using self-assembled monolayers. Angew Chem Int. Ed, 2005, 44:6282 doi: 10.1002/(ISSN)1521-3773
[14]
Walter S R, Youn J, Emery J D, et al. In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors:origin and control of large performance sensitivities. J Am Chem Soc, 2012, 134(28):11726 doi: 10.1021/ja3036493
[15]
Halik M, Hirsch A. The potential of molecular self-assembled monolayers in organic electronic devices. Adv Mater, 2011, 23:2689 doi: 10.1002/adma.v23.22/23
[16]
Silverman B M, Wieghaus K A, Schwartz J. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir, 2005, 21:225 doi: 10.1021/la048227l
[17]
Liakos I L, McAlpine E, Chen X Y, et al. Assembly of octadecyl phosphonic acid on the α-Al2O3 (0001) surface of air annealed alumina:evidence for termination dependent adsorption. Appl Surf Sci, 2008, 255(5):3276 doi: 10.1016/j.apsusc.2008.09.037
[18]
Hanson E L, Schwartz J, Nickel B, et al. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J Am Chem Soc, 2003, 125(51):16074 doi: 10.1021/ja035956z
[19]
Guo X, Qin C J, Cheng Y X, et al. White electroluminescence from a phosphonate-functionalized single-polymer system with electron-trapping effect. Adv Mater, 2009, 21:3682 doi: 10.1002/adma.v21:36
[20]
Kang M S, Ma H, Yip H L, et al. Direct surface functionalization of indium tin oxide via electrochemically induced assembly. J Mater Chem, 2007, 17:3489 doi: 10.1039/b705559e
[21]
Klauk H, Zschieschang U, Pflaum J, et al. Ultralow-power organic complementary circuits. Nature, 2007, 445:745 doi: 10.1038/nature05533
[22]
Jurchescu O D, Meetsma A, Palstra T T M. Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Crystallographica Section B:Structural Science, 2006, 62:330 doi: 10.1107/S0108768106003053
[23]
Yang S Y, Shin K, Park C E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv Funct Mater, 2005, 15:1806 doi: 10.1002/(ISSN)1616-3028
Fig. 1.  (a) Chemical structure of the rubrene and ADO-PA SAMs. (b) Device structure of the thin-film transistors

Fig. 2.  XRD pattern of rubrene thin film on an ADO-PA modified SiO2 surface.

Fig. 3.  (a) Drain current (IDS)versus gate voltage (VGS) at VDS D 50 V with channel dimensions of W = 2 mm and L D 150 um. (b) Drain current (IDS) versus drain–source voltage (VDS) with VGS from -10 to -50 V in -10 V steps.

Fig. 4.  (a)AFM amplitude and(b) height images of rubrene thin film on ADO-PA modified SiO$_{2}$ surface. The thickness of rubrene films is 80 nm. The substrate temperature was kept at 90 ℃ during the deposition of rubrene.

Fig. 5.  AFM height image of ADO-PA modified SiO2 surface.

Fig. 6.  Reflection polarized light micrograph of 80 nm rubrene on ADO-PA modified SiO2 substrate.

Table 1.   Device characteristics of rubrene on different dielectric surfaces.

[1]
Tang M L, Reichardt A D, Wei P, et al. Correlating carrier type with frontier molecular orbital energy levels in organic thin film transistors of functionalized acene derivatives. J Am Chem Soc, 2009, 131:5264 doi: 10.1021/ja809659b
[2]
Dodabalapur A. Semiconductor technology-negatively successful. Nature, 2005, 434:151 http://adsabs.harvard.edu/abs/2005Natur.434..151D
[3]
Sirringhaus H. Device physics of Solution-processed organic field-effect transistors. Adv Mater, 2005, 17:2411 doi: 10.1002/(ISSN)1521-4095
[4]
Roberts M E, LeMieux M C, Bao Z N. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano, 2009, 10:3287 doi: 10.1021/nn900808b?src=recsys&journalCode=ancac3
[5]
Li Z F, Du J, Tang Q, et al. Induced crystallization of rubrene in thin-film transistors. Adv Mater, 2010, 22:3242 doi: 10.1002/adma.201000786
[6]
Hwang S K, Bae I, Cho S M, et al. High performance multi-level non-volatile polymer memory with solution-blended ferroelectric polymer/high-k insulators for low voltage operation. Adv Funct Mater, 2013, 23:5484 doi: 10.1002/adfm.v23.44
[7]
Tsai T D, Chang J W, Wen T C, et al. Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements. Adv Funct Mater, 2013, 23:4206 doi: 10.1002/adfm.v23.34
[8]
Majewski L A, Schroeder R, Grell M. One volt organic transistor. Adv Mater, 2005, 17:192 doi: 10.1002/(ISSN)1521-4095
[9]
Zirkl M, Haase A, Fian A, et al. Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors. Adv Mater, 2007, 19:2241 doi: 10.1002/(ISSN)1521-4095
[10]
Lee B H, Ryu M K, Choi S Y, et al. Rapid vapor-phase fabrication of organic-inorganic hybrid superlattices with monolayer precision. J Am Chem Soc, 2007, 129:16034 doi: 10.1021/ja075664o
[11]
Park B, Cho S E, Kim Y, et al. Simultaneous study of exciton diffusion/dissociation and charge transport in a donor-acceptor bilayer:pentacene on a C60-terminated self-assembled monolayer. Adv Mater, 2013, 25:6453 doi: 10.1002/adma.v25.44
[12]
Ulman A. Formation and structure of self-assembled monolayers. Chem Rev, 1996, 96:1533 doi: 10.1021/cr9502357
[13]
Onclin S, Ravoo B J, Reinhoudt D N. Engineering silicon oxide surfaces using self-assembled monolayers. Angew Chem Int. Ed, 2005, 44:6282 doi: 10.1002/(ISSN)1521-3773
[14]
Walter S R, Youn J, Emery J D, et al. In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors:origin and control of large performance sensitivities. J Am Chem Soc, 2012, 134(28):11726 doi: 10.1021/ja3036493
[15]
Halik M, Hirsch A. The potential of molecular self-assembled monolayers in organic electronic devices. Adv Mater, 2011, 23:2689 doi: 10.1002/adma.v23.22/23
[16]
Silverman B M, Wieghaus K A, Schwartz J. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir, 2005, 21:225 doi: 10.1021/la048227l
[17]
Liakos I L, McAlpine E, Chen X Y, et al. Assembly of octadecyl phosphonic acid on the α-Al2O3 (0001) surface of air annealed alumina:evidence for termination dependent adsorption. Appl Surf Sci, 2008, 255(5):3276 doi: 10.1016/j.apsusc.2008.09.037
[18]
Hanson E L, Schwartz J, Nickel B, et al. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J Am Chem Soc, 2003, 125(51):16074 doi: 10.1021/ja035956z
[19]
Guo X, Qin C J, Cheng Y X, et al. White electroluminescence from a phosphonate-functionalized single-polymer system with electron-trapping effect. Adv Mater, 2009, 21:3682 doi: 10.1002/adma.v21:36
[20]
Kang M S, Ma H, Yip H L, et al. Direct surface functionalization of indium tin oxide via electrochemically induced assembly. J Mater Chem, 2007, 17:3489 doi: 10.1039/b705559e
[21]
Klauk H, Zschieschang U, Pflaum J, et al. Ultralow-power organic complementary circuits. Nature, 2007, 445:745 doi: 10.1038/nature05533
[22]
Jurchescu O D, Meetsma A, Palstra T T M. Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Crystallographica Section B:Structural Science, 2006, 62:330 doi: 10.1107/S0108768106003053
[23]
Yang S Y, Shin K, Park C E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv Funct Mater, 2005, 15:1806 doi: 10.1002/(ISSN)1616-3028
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2114 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 26 March 2014 Revised: 14 May 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhefeng Li, Xianye Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors[J]. Journal of Semiconductors, 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004 Z F Li, X Y Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors[J]. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004.Export: BibTex EndNote
      Citation:
      Zhefeng Li, Xianye Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors[J]. Journal of Semiconductors, 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004

      Z F Li, X Y Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors[J]. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004.
      Export: BibTex EndNote

      ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

      doi: 10.1088/1674-4926/35/10/104004
      Funds:

      the Fundamental Research Funds for the Central Universities CQDXWL-2012-030

      Project supported by the National Natural Science Foundation of China (No. 61106002), the Natural Science Foundation Project of CQ CSTC (No. 2011BB4083), and the Fundamental Research Funds for the Central Universities (Nos. CDJZR13225502, CQDXWL-2012-030, CDJRC10220007)

      the Fundamental Research Funds for the Central Universities CDJZR13225502

      the National Natural Science Foundation of China 61106002

      the Natural Science Foundation Project of CQ CSTC 2011BB4083

      the Fundamental Research Funds for the Central Universities CDJRC10220007

      More Information
      • Corresponding author: Li Zhefeng, Email:zhefeng@cqu.edu.cn
      • Received Date: 2014-03-26
      • Revised Date: 2014-05-14
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return