SEMICONDUCTOR INTEGRATED CIRCUITS

A low-power time-domain VCO-based ADC in 65 nm CMOS

Chenluan Wang, Shengxi Diao and Fujiang Lin

+ Author Affiliations

 Corresponding author: Diao Shengxi, Email:diaosxi@ustc.edu.cn

PDF

Abstract: A low-power, high-FoM (figure of merit), time-domain VCO (voltage controlled oscillator)-based ADC (analog-to-digital converter) in 65 nm CMOS technology is proposed. An asynchronous sigma-delta modulator (ASDM) is used to convert the voltage input signal to a square wave time signal, where the information is contained in its pulse-width. A time-domain quantizer, which uses VCO to convert voltage to frequency, is adopted, while the XOR (exclusive-OR) gate circuits convert the frequency information to digital representatives. The ASDM does not need an external clock, so there is no quantization noise. At the same time, the ASDM applies a harmonic-distortion-cancellation technique to its transconductance stage, which increases the SNDR (signal to noise and distortion ratio) performance of the ASDM. Since the output of the ASDM is a two-level voltage signal, the VCO's V-F(voltage to frequency) conversion curve is always linear. The XOR phase quantizer has an inherent feature of first-order noise-shaping. It puts the ADC's low-frequency output noise to high-frequency which is further filtered out by a low-pass filter. The proposed ADC achieves an SNR/SNDR of 54. dB/54.3 dB in the 8 MHz bandwidth, while consuming 2.8 mW. The FoM of the proposed ADC is a 334 fJ/conv-step.

Key words: VCOADCASDMPWM (pulse width modulation)nonlinearitylow-power



[1]
Park M, Perrott M H. A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time delta-sigma ADC with VCO-based integrator and quantizer implemented in 0.13μm CMOS. IEEE J Solid-State Circuits, 2009, 44(12):3344 doi: 10.1109/JSSC.2009.2032703
[2]
Taylor G, Galton I. A mostly-digital variable-rate continuous-time delta-sigma modulator ADC. IEEE J Solid-State Circuits, 2010, 45(12):2634 doi: 10.1109/JSSC.2010.2073193
[3]
Rao S, Young B, Elshazly A, et al. A 71 dB SFDR open loop VCO-based ADC using 2-level PWM modulation. Symposium of VLSI Circuits Digest, 2011
[4]
Daniels J, Dehaene W, Steyaert M S J, et al. A/D conversion using asynchronous delta-sigma modulation and time-to-digital conversion. IEEE Trans Circuits Syst I Regular Papers, 2010, 57: 2404
[5]
Reddy K, Rao S, Inti R, et al. A 16 mW 78 dB-SNDR 10 MHz-BW CT-δ σ ADC using residue-cancelling VCO-based quantizer. ISSCC Digest Technical Papers, 2012
[6]
Ouzounov S, Roza E, Hegt J A, et al. Analysis and design of high-performance asynchronous sigma-delta modulators with a binary quantizer. IEEE J Solid-State Circuits, 2005, 41(3):588
[7]
Kim J, Jang T K, Yoon Y G, et al. Analysis and design of voltage-controlled oscillator based analog-to-digital converter. IEEE Trans Circuits Syst I:Regular Papers, 2010, 1(57):18
[8]
Ouzounov S, Roza E, Weide G V D, et al. A CMOS V-I converter with 75-dB SFDR and 360μW power consumption. IEEE J Solid-State Circuits, 2005, 40(7):1527 doi: 10.1109/JSSC.2005.847496
[9]
Ma Zhaoxin, Bai Xuefei, Huang Lu. Design of a delay-locked-loop-based time-to-digital converter. Journal of Semiconductors, 2013, 34(9):095003 doi: 10.1088/1674-4926/34/9/095003
Fig. 1.  Receiver architecture for multi-mode multi-band standard.

Fig. 2.  System architecture of the ASDM.

Fig. 3.  Understanding of first-order noise-shaping.

Fig. 5.  Harmonic-distortion cancelling V/I converter.

Fig. 4.  Block-level architecture of the ASDM.

Fig. 6.  Comparator with hysteresis.

Fig. 7.  Simulation results of the harmonic-cancellation ASDM.

Fig. 8.  Block-level architecture of the ASDM.

Fig. 9.  Harmonic-distortion cancelling V/I converter.

Fig. 10.  (a) Chip micro-photo and (b) layout of the prototype ADC.

Fig. 11.  The platform for measurement.

Fig. 12.  Output spectrum of the proposed ADC.

Fig. 13.  Measured SNDR & FOM versus signal bandwidth.

Table 1.   Performance comparison.

[1]
Park M, Perrott M H. A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time delta-sigma ADC with VCO-based integrator and quantizer implemented in 0.13μm CMOS. IEEE J Solid-State Circuits, 2009, 44(12):3344 doi: 10.1109/JSSC.2009.2032703
[2]
Taylor G, Galton I. A mostly-digital variable-rate continuous-time delta-sigma modulator ADC. IEEE J Solid-State Circuits, 2010, 45(12):2634 doi: 10.1109/JSSC.2010.2073193
[3]
Rao S, Young B, Elshazly A, et al. A 71 dB SFDR open loop VCO-based ADC using 2-level PWM modulation. Symposium of VLSI Circuits Digest, 2011
[4]
Daniels J, Dehaene W, Steyaert M S J, et al. A/D conversion using asynchronous delta-sigma modulation and time-to-digital conversion. IEEE Trans Circuits Syst I Regular Papers, 2010, 57: 2404
[5]
Reddy K, Rao S, Inti R, et al. A 16 mW 78 dB-SNDR 10 MHz-BW CT-δ σ ADC using residue-cancelling VCO-based quantizer. ISSCC Digest Technical Papers, 2012
[6]
Ouzounov S, Roza E, Hegt J A, et al. Analysis and design of high-performance asynchronous sigma-delta modulators with a binary quantizer. IEEE J Solid-State Circuits, 2005, 41(3):588
[7]
Kim J, Jang T K, Yoon Y G, et al. Analysis and design of voltage-controlled oscillator based analog-to-digital converter. IEEE Trans Circuits Syst I:Regular Papers, 2010, 1(57):18
[8]
Ouzounov S, Roza E, Weide G V D, et al. A CMOS V-I converter with 75-dB SFDR and 360μW power consumption. IEEE J Solid-State Circuits, 2005, 40(7):1527 doi: 10.1109/JSSC.2005.847496
[9]
Ma Zhaoxin, Bai Xuefei, Huang Lu. Design of a delay-locked-loop-based time-to-digital converter. Journal of Semiconductors, 2013, 34(9):095003 doi: 10.1088/1674-4926/34/9/095003
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2915 Times PDF downloads: 35 Times Cited by: 0 Times

    History

    Received: 28 March 2014 Revised: 07 May 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chenluan Wang, Shengxi Diao, Fujiang Lin. A low-power time-domain VCO-based ADC in 65 nm CMOS[J]. Journal of Semiconductors, 2014, 35(10): 105009. doi: 10.1088/1674-4926/35/10/105009 C L Wang, S X Diao, F J Lin. A low-power time-domain VCO-based ADC in 65 nm CMOS[J]. J. Semicond., 2014, 35(10): 105009. doi: 10.1088/1674-4926/35/10/105009.Export: BibTex EndNote
      Citation:
      Chenluan Wang, Shengxi Diao, Fujiang Lin. A low-power time-domain VCO-based ADC in 65 nm CMOS[J]. Journal of Semiconductors, 2014, 35(10): 105009. doi: 10.1088/1674-4926/35/10/105009

      C L Wang, S X Diao, F J Lin. A low-power time-domain VCO-based ADC in 65 nm CMOS[J]. J. Semicond., 2014, 35(10): 105009. doi: 10.1088/1674-4926/35/10/105009.
      Export: BibTex EndNote

      A low-power time-domain VCO-based ADC in 65 nm CMOS

      doi: 10.1088/1674-4926/35/10/105009
      More Information
      • Corresponding author: Diao Shengxi, Email:diaosxi@ustc.edu.cn
      • Received Date: 2014-03-28
      • Revised Date: 2014-05-07
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return