SEMICONDUCTOR DEVICES

Comparative study of leakage power in CNTFET over MOSFET device

Sanjeet Kumar Sinha and Saurabh Chaudhury

+ Author Affiliations

 Corresponding author: Sanjeet Kumar Sinha, Email:saurabh1971@gmail.com

PDF

Abstract: A comparison of the CNTFET device with the MOSFET device in the nanometer regime is reported. The characteristics of both devices are observed as varying the oxide thickness.Thereafter, we have analyzed the effect of the chiral vector and the temperature on the threshold voltage of the CNTFET device.After simulation on the HSPICE tool, we observed that the high threshold voltage can be achieved at a low chiral vector pair.It is also observed that the effect of temperature on the threshold voltage of the CNTFET is negligibly small.After that, we have analyzed the channel length variation and their impact on the threshold voltage of the CNTFET as well as MOSFET devices.We found an anomalous effect from our simulation result that the threshold voltage increases with decreasing the channel length in CNTFET devices; this is contrary to the well known short channel effect. It is observed that at below the 10 nm channel length, the threshold voltage is increased rapidly in the case of the CNTFET device, whereas in the case of the MOSFET device, the threshold voltage decreases drastically.

Key words: MOSFETCNTFETtemperatureoxide thicknessthreshold voltagechannel length



[1]
Moore G. Progress in digital electronics. IEDM Tech Digest, 1975:11
[2]
[3]
McEuen P L, Fuhrer M S, Park H K. Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol, 2002, 1(1):78 doi: 10.1109/TNANO.2002.1005429
[4]
Hoenlein W. New prospects for microelectronics:carbon nanotubes. Jpn J Appl Phys, 2002, 41:4370 doi: 10.1143/JJAP.41.4370
[5]
Martel R, Schmidt T, Shea H R, et al. Single and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73(17):2447 doi: 10.1063/1.122477
[6]
Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube fieldeffect transistors. Nature, 2003, 424:654 doi: 10.1038/nature01797
[7]
Baughman R H, Zhakidov A A, DeHeer W A. Carbon nanotubesthe route toward applications. Science, 2002, 297:787 doi: 10.1126/science.1060928
[8]
Collins P G, Avouris P. Nanotubes for electronics. Sci Amer, 2000, 12:62 http://www.ncbi.nlm.nih.gov/pubmed/11103460
[9]
Mintmire J W, White C T. Universal density of states for carbon nanotubes. Phys Rev Lett, 1998, 81(12):2506 doi: 10.1103/PhysRevLett.81.2506
[10]
Ijiima S. Helical microtubules of graphitic carbon. Nature, 1991, 354:56 doi: 10.1038/354056a0
[11]
Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans Comput Aided Design Integr Circuits Syst, 2004, 23(10):1411 doi: 10.1109/TCAD.2004.835135
[12]
Fregonese S, d'Honincthun H C, Goguet J, et al. Computationally efficient physics-based compact CNTFET model for circuit design. IEEE Trans Electron Devices, 2008, 55(6):1317 doi: 10.1109/TED.2008.922494
[13]
Deng J, Wong H S P. A compact SPICE model for carbon nanotube field-effect transistors including non-idealities and its application-Part Ⅰ:model of the intrinsic channel region. IEEE Trans Electron Devices, 2007, 54(12):3186 doi: 10.1109/TED.2007.909030
[14]
Pu S N, Yin W Y, Mao J F, et al. Crosstalk prediction of singleand double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Trans Electron Devices, 2009, 56(4):560 doi: 10.1109/TED.2009.2014429
[15]
Dekker C. Carbon nanotubes as molecular quantum wires. Phys Today, 1999, 52(5):22 doi: 10.1063/1.882658
[16]
Luryi S. Quantum capacitance devices. Appl Phys Lett, 1998, 52:501 doi: 10.1063/1.99649
[17]
Dresselhaus M S, Dresselhaus G, Riichiro S. Carbon fibers based on C60 and their symmetry. Phys Rev B, 1992, 45(11):6234 doi: 10.1103/PhysRevB.45.6234
[18]
Wei B Q, Vajtai R, Ajayan P M. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett, 2001, 79(8):1172 doi: 10.1063/1.1396632
[19]
Appenzeller J. Carbon nanotubes for high-performance electronics:progress and prospect. Proc IEEE, 2008, 96(12):201 http://ieeexplore.ieee.org/document/4399979/
[20]
Terada K, Muta H. A new method to determine effective MOSFET channel length. Jpn J Appl Phys, 1979, 18:953 doi: 10.1143/JJAP.18.953
[21]
Chern J G J, Chang P, Motta R F, et al. A new method to determine MOSFET channel length. IEEE Electron Device Lett, 1980, EDL-1:170 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1481138
[22]
Taur Y, Mii Y J, Logan R, et al. On effective channel length in 0.1μm MOS FET's. IEEE Electron Device Lett, 1995, 16:136 doi: 10.1109/55.372493
[23]
Jain S. Measurement of threshold voltage and channel length of submicron MOSFET's. Proc Inst Elect Eng, 1988, 135(1):162 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4644473
Fig. 1.  Schematic of MOSFET device.

Fig. 2.  Rolled up sheet of grapheme.

Fig. 3.  Schematic of CNTFET device.

Fig. 4.  Qc versus gate voltage of MOSFET device.

Fig. 5.  Qc versus gate voltage of CNTFET device.

Fig. 6.  Graphene atomic structure with chiral vector.

Fig. 7.  Threshold voltage decreases with increase in chiral vector ($m, n$).

Fig. 8.  Threshold voltage versus temperature.

Fig. 9.  Threshold voltage versus temperature.

Fig. 10.  Characteristics of MOSFET at different channel lengths.

Fig. 11.  Threshold voltage with respect to the channel length of CNTFET and MOSFET devices

Fig. 12.  Threshold voltage w.r.t channel length.

Table 1.   Threshold voltage W.R.T different Chiral vector.

Table 2.   Threshold voltage W.R.T. temperature.

Table 3.   Threshold voltage W.R.T. temperature.

Table 4.   Threshold voltage W.R.T different channel lengths.

[1]
Moore G. Progress in digital electronics. IEDM Tech Digest, 1975:11
[2]
[3]
McEuen P L, Fuhrer M S, Park H K. Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol, 2002, 1(1):78 doi: 10.1109/TNANO.2002.1005429
[4]
Hoenlein W. New prospects for microelectronics:carbon nanotubes. Jpn J Appl Phys, 2002, 41:4370 doi: 10.1143/JJAP.41.4370
[5]
Martel R, Schmidt T, Shea H R, et al. Single and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73(17):2447 doi: 10.1063/1.122477
[6]
Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube fieldeffect transistors. Nature, 2003, 424:654 doi: 10.1038/nature01797
[7]
Baughman R H, Zhakidov A A, DeHeer W A. Carbon nanotubesthe route toward applications. Science, 2002, 297:787 doi: 10.1126/science.1060928
[8]
Collins P G, Avouris P. Nanotubes for electronics. Sci Amer, 2000, 12:62 http://www.ncbi.nlm.nih.gov/pubmed/11103460
[9]
Mintmire J W, White C T. Universal density of states for carbon nanotubes. Phys Rev Lett, 1998, 81(12):2506 doi: 10.1103/PhysRevLett.81.2506
[10]
Ijiima S. Helical microtubules of graphitic carbon. Nature, 1991, 354:56 doi: 10.1038/354056a0
[11]
Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans Comput Aided Design Integr Circuits Syst, 2004, 23(10):1411 doi: 10.1109/TCAD.2004.835135
[12]
Fregonese S, d'Honincthun H C, Goguet J, et al. Computationally efficient physics-based compact CNTFET model for circuit design. IEEE Trans Electron Devices, 2008, 55(6):1317 doi: 10.1109/TED.2008.922494
[13]
Deng J, Wong H S P. A compact SPICE model for carbon nanotube field-effect transistors including non-idealities and its application-Part Ⅰ:model of the intrinsic channel region. IEEE Trans Electron Devices, 2007, 54(12):3186 doi: 10.1109/TED.2007.909030
[14]
Pu S N, Yin W Y, Mao J F, et al. Crosstalk prediction of singleand double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Trans Electron Devices, 2009, 56(4):560 doi: 10.1109/TED.2009.2014429
[15]
Dekker C. Carbon nanotubes as molecular quantum wires. Phys Today, 1999, 52(5):22 doi: 10.1063/1.882658
[16]
Luryi S. Quantum capacitance devices. Appl Phys Lett, 1998, 52:501 doi: 10.1063/1.99649
[17]
Dresselhaus M S, Dresselhaus G, Riichiro S. Carbon fibers based on C60 and their symmetry. Phys Rev B, 1992, 45(11):6234 doi: 10.1103/PhysRevB.45.6234
[18]
Wei B Q, Vajtai R, Ajayan P M. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett, 2001, 79(8):1172 doi: 10.1063/1.1396632
[19]
Appenzeller J. Carbon nanotubes for high-performance electronics:progress and prospect. Proc IEEE, 2008, 96(12):201 http://ieeexplore.ieee.org/document/4399979/
[20]
Terada K, Muta H. A new method to determine effective MOSFET channel length. Jpn J Appl Phys, 1979, 18:953 doi: 10.1143/JJAP.18.953
[21]
Chern J G J, Chang P, Motta R F, et al. A new method to determine MOSFET channel length. IEEE Electron Device Lett, 1980, EDL-1:170 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1481138
[22]
Taur Y, Mii Y J, Logan R, et al. On effective channel length in 0.1μm MOS FET's. IEEE Electron Device Lett, 1995, 16:136 doi: 10.1109/55.372493
[23]
Jain S. Measurement of threshold voltage and channel length of submicron MOSFET's. Proc Inst Elect Eng, 1988, 135(1):162 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4644473
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6532 Times PDF downloads: 143 Times Cited by: 0 Times

    History

    Received: 22 April 2014 Revised: 04 June 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Sanjeet Kumar Sinha, Saurabh Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device[J]. Journal of Semiconductors, 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002 S K Sinha, S Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device[J]. J. Semicond., 2014, 35(11): 114002. doi:  10.1088/1674-4926/35/11/114002.Export: BibTex EndNote
      Citation:
      Sanjeet Kumar Sinha, Saurabh Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device[J]. Journal of Semiconductors, 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002

      S K Sinha, S Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device[J]. J. Semicond., 2014, 35(11): 114002. doi:  10.1088/1674-4926/35/11/114002.
      Export: BibTex EndNote

      Comparative study of leakage power in CNTFET over MOSFET device

      doi: 10.1088/1674-4926/35/11/114002
      More Information
      • Corresponding author: Sanjeet Kumar Sinha, Email:saurabh1971@gmail.com
      • Received Date: 2014-04-22
      • Revised Date: 2014-06-04
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return